

Subject-specific Examination Regulations for Software, Data and Technology

(Fachspezifische Prüfungsordnung)

The subject-specific examination regulations for Software, Data and Technology are defined by this
program handbook and are valid only in combination with the General Examination Regulations for
Undergraduate degree programs (General Examination Regulations = Rahmenprüfungsordnung). This
handbook also contains the program-specific Study and Examination Plan (Chapter 6).

Upon graduation, students in this program will receive a Bachelor of Science (BSc) degree with a scope
of 180 ECTS (for specifics see Chapter 4 of this handbook).

Version Valid as of Decision Details

Fall 2024 – V 1.0 Sep 01, 2024

 June 28, 2023

Academic Senate approval of
study program name change
from “Data Science and
Software Development” to
“Software, Data and
Technology”

 Sep 01, 2023

May 24, 2023 Originally approved by
Academic Senate

Contents
1 Program Overview .. 6

1.1 Concept .. 6

 The Constructor University Educational Concept .. 6

 Program Concept .. 6

1.2 Specific Advantages of Software, Data and Technology at Constructor University 7

1.3 Program-Specific Educational Aims .. 8

 Qualification Aims .. 8

 Intended Learning Outcomes ... 9

1.4 Career Options and Support ... 10

1.5 Admission Requirements.. 10

1.6 More information and contacts ... 11

2 The Curricular Structure .. 12

2.1 General ... 12

2.2 The Constructor University 4C Model .. 12

 Year 1 – CHOICE .. 13

 Year 2 – CORE ... 14

 Year 3 – CAREER ... 15

2.3 The CONSTRUCTOR Track ... 17

 Methods Modules .. 18

 New Skills Modules ... 18

 German Language and Humanities Modules ... 19

3 Software Development as a minor .. 20

3.1 Qualification Aims .. 20

3.2 Intended Learning Outcomes ... 20

3.3 Module Requirements .. 20

3.4 Degree .. 20

4 Software, Data and Technology Undergraduate Program Regulations............................ 21

4.1 Scope of these Regulations .. 21

4.2 Degree .. 21

4.3 Graduation Requirements .. 21

5 Schematic Study Plan for Software, Data and Technology .. 22

6 Study and Examination Plan .. 23

7 Software, Data and Technology Modules .. 25

7.1 Programming in C and C++ ... 25

1.1.1

1.1.2

1.3.1

1.3.2

2.2.1

2.2.2

2.2.3

2.3.1

2.3.2

2.3.3

7.2 Mathematical Foundations of Computer Science .. 27

7.3 Analysis ... 29

7.4 Scientific Programming with Python .. 31

7.5 Linear Algebra ... 33

7.6 Digital Systems and Computer Architecture .. 35

7.7 Development in JVM Languages .. 37

7.8 Core Algorithms and Data Structures ... 39

7.9 Operating Systems.. 41

7.10 Functional Programming .. 43

7.11 Scientific Data Analysis ... 45

7.12 Advanced Algorithms and Data Structures .. 47

7.13 Machine Learning ... 49

7.14 Discrete Mathematics .. 51

7.15 Artificial Intelligence ... 53

7.16 Software Engineering and Design .. 55

7.17 Database Fundamentals ... 58

7.18 Deep Learning ... 60

7.19 Stochastic Modeling and Financial Mathematics ... 62

7.20 Optimization Methods ... 64

7.21 Natural Language Processing ... 66

7.22 Distributed Algorithms ... 68

7.23 Computer Networks ... 70

7.24 Databases Internals .. 72

7.25 Integrated Development and IT Operations .. 74

7.26 Parallel Programming ... 76

7.27 Formal Languages and Parsers ... 78

7.28 Compilers .. 80

7.29 Semantics of Programming Languages .. 82

7.30 Internship / Startup and Career Skills .. 84

7.31 Bachelor Thesis and Seminar in SDT .. 87

8 Constructor Track Modules ... 89

8.1 Methods ... 89

 Elements of Linear Algebra .. 89

 Elements of Calculus... 91

 Matrix Algebra and Advanced Calculus I .. 93

8.1.1

8.1.2

8.1.3

 Matrix Algebra and Advanced Calculus II ... 95

 Probability and Random Processes .. 97

 Statistics and Data Analytics ... 99

8.2 New Skills .. 101

 Logic (perspective I) .. 101

 Logic (perspective II) ... 103

 Causation and Correlation (perspective I) .. 105

 Causation and Correlation (perspective II) ... 107

 Linear Model and Matrices... 109

 Complex Problem Solving ... 111

 Argumentation, Data Visualization and Communication (perspective I) 113

 Argumentation, Data Visualization and Communication (perspective II) 115

 Agency, Leadership, and Accountability... 117

 Community Impact Project ... 119

8.3 Language and Humanities Modules ... 121

 Languages ... 121

 Humanities ... 121

9 Appendix .. 127

9.1 Intended Learning Outcomes Assessment-Matrix ... 127

8.1.4

8.1.5

8.1.6

8.2.1

8.2.2

8.2.3

8.2.4

8.2.5

8.2.6

8.2.7

8.2.8

8.2.9

8.2.10

8.3.1

8.3.2

6

1 Program Overview

1.1 Concept

 The Constructor University Educational Concept

Constructor University aims to educate students for both an academic and a professional career by
emphasizing three core objectives: academic excellence, personal development, and employability to
succeed in the working world. Constructor University offers an excellent research driven education
experience across disciplines to prepare students for graduate education as well as career success by
combining disciplinary depth and interdisciplinary breadth with supplemental skills education and
extra-curricular elements. Through a multi-disciplinary, wholistic approach and exposure to cutting-
edge technologies and challenges, Constructor University develops and enables the academic
excellence, intellectual competences, societal engagement, professional and scientific skills of
tomorrows leaders for a sustainable and peaceful future.

In this context, it is Constructor University’s aim to educate talented young people from all over the
world, regardless of nationality, religion, and material circumstances, to become citizens of the world
who are able to take responsible roles for the democratic, peaceful, and sustainable development of
the societies in which they live. This is achieved through a high-quality teaching as well as manageable
study loads and supportive study conditions. Study programs and related study abroad programs
convey academic knowledge as well as the ability to interact positively with other individuals and
groups in culturally diverse environments. The ability to succeed in the working world is a core
objective for all study programs at Constructor University, both in terms of actual disciplinary subject
matter and also to the social skills and intercultural competence. Study-program-specific modules and
additional specializations provide the necessary depth, interdisciplinary offerings and the minor option
provide breadth while the university-wide general foundation and methods modules, optional German
language and Humanity modules, and an extended internship period strengthen the employability of
students. The concept of living and learning together on an international campus with many cultural
and social activities supplements students’ education. In addition, Constructor University offers
professional advising and counseling.

Constructor University’s educational concept is highly regarded both nationally and internationally.
While the university has consistently achieved top marks over the last decade in Germany’s most
comprehensive and detailed university ranking by the Center for Higher Education (CHE), it has also
been listed by one of the most widely observed university rankings, the Times Higher Education (THE)
ranking. More details on the current ranking positions can be found at
https://constructor.university/more/about-us.

 Program Concept

Software, Data and Technology are at the forefront of modern industries and play a major role in most
areas of science and technology. The field is constantly evolving, but the fundamental principles
underlying these technologies have now developed into a mature discipline. The BSc Software, Data
and Technology program at Constructor University focuses on the understanding of these principles
and their application in practice.

Students will obtain core software, data and technology competencies and skills (e.g., programming,
data analysis, and machine learning) and they will learn about fundamental abstractions and abstract

1.1.1

1.1.2

https://constructor.university/more/about-us

7

notions of software, data and technology (e.g., data structures, algorithms, and software design
principles). They will learn about the principles behind and the proper usage of core technologies (e.g.,
databases, parallel programming, compilers, and data analysis). Finally, students will develop an
understanding of the limitations of technology and side effects of software, data and technology
systems (e.g., security, privacy, and ethical aspects).

Because software, data and technology are rooted in mathematics and computer science, students
will take mathematical and computer science methods modules covering calculus, linear algebra,
probability theory, statistics, and numerical methods or discrete mathematics.

The job market for computer scientists has been very favorable in the last few years, and there is no
indication that this will change in the near future. Because of the rapid changes in the field, it is
important to focus the education on the fundamental principles, as well as, subfields of promising
future relevance. Cross-disciplinary breadth and flexibility, as well as social and work organization skills
are increasingly important. The program offers a major option in Software, Data and Technology
designed for students who plan to work in the information technology industry or join graduate
programs related to the discipline.

In summary, the BSc Software, Data and Technology program at Constructor University is designed to
provide students with the foundational knowledge, skills and understanding of the principles and
application of software, data and technology in modern industries. With an emphasis on cross-
disciplinary breadth and flexibility, students will be well-prepared for a wide range of career
opportunities in the field.

1.2 Specific Advantages of Software, Data and Technology at Constructor University

The Software, Data and Technology program at Constructor University aims to provide students with
a comprehensive and rigorous education in the foundations of software, data and technology, while
also keeping the curriculum contemporary and internationally oriented.

• The program will focus on relating the theoretical concepts to their practical application in
industry and research, with instructors incorporating recent developments and trends in the
field to demonstrate how basic methods and techniques are being used today.

• Early involvement in research projects will be an integral aspect of the program, providing
students with the opportunity to gain hands-on experience and potentially develop
interdisciplinary collaborations.

• The program will be constantly fine-tuned through direct and open dialogue with students and
alumni, ensuring that the curriculum meets their specific needs and prepares them for
internships and job opportunities.

• One of the specific advantages of the program is its carefully designed curriculum with a
diverse range of course offerings, providing students with a well-rounded understanding of
the field and preparing them for various career paths. The program covers foundational
subjects such as Linear Algebra, Analysis, Programming in C and C++, Core and Advanced
Algorithms & Data Structures, as well as more specialized subjects. These courses are
structured to ensure a progressive learning experience, with advanced modules building on
the knowledge acquired in earlier modules.

• In addition to the core curriculum, the program also offers three specialized tracks: Machine
Learning, Software Development, and Programming Languages. These specialized tracks

1

8

provide students with the opportunity to delve deeper into specific areas of interest and gain
expertise in their chosen field. The Machine Learning specialization, for example, offers
additional courses such as Optimization Methods, Stochastic Modeling and Financial
Mathematics, Deep Learning, and NLP. The Software Development specialization includes
courses such as Databases Internals, Integrated Development and IT Operations, Software
Design, Parallel Programming, and Distributed Algorithms, while the Programming Languages
specialization includes Formal Languages and Parsers, Compilers, and Semantics of
Programming Languages.

The close ties and support and participation of JetBrains in the development of the program will
provide students with unique opportunities for project work, internships, and access to special
courses, as well as the chance to receive scholarships covering tuition, boarding, insurance, and a
monthly allowance.

1.3 Program-Specific Educational Aims

 Qualification Aims

The main subject-specific qualification aim of the BSc Software, Data and Technology program at
Constructor University is to enable students to take up qualified employment in modern industries
involving software, data and technology or to enter graduate programs related to these fields.
Graduates of the program will have the following competencies:

• Software, Data and Technology competence

Graduates will be familiar with the theoretical foundations of software, data and technology and will
be able to design and develop systems addressing a given application scenario. They will be able to
analyze and structure complex problems and will be able to address them using programspecific
methods. Graduates will be able to construct and maintain complex systems using a structured,
analytic, and creative approach.

• Communication competence

Graduates will be able to communicate subject-specific topics convincingly in both spoken and written
form to fellow data scientists, software developers, or customers.

• Teamwork and project management competence

Graduates will be able to work effectively in a team and will be able to organize workflows in complex
development efforts. They will be familiar with tools that support the development, testing, and
maintenance of large systems and will be able to take design decisions in a constructive way.

• Learning competence

Graduates will have acquired a solid foundation enabling them to assess their own knowledge and
skills, learn effectively, and remain up to date with the latest developments in the rapidly evolving
fields of software, data and technology.

• Personal and professional competence

Graduates will be able to develop a professional profile, justify professional decisions based on
theoretical and methodical knowledge, and critically reflect on their behavior with respect to their

1.3.1

9

consequences for society. Additionally, the program being developed with the support and
participation of JetBrains will provide students with the opportunity for project work and internships
in the company.

 Intended Learning Outcomes

By the end of the BSc Software, Data and Technology program, students will be able to

1. work professionally in the field of software, data and technology and enter graduate programs
related to these fields;

2. apply fundamental concepts of mathematics, statistics, and computer science while solving
data-related problems;

3. analyze at multiple levels of abstraction and use appropriate mathematical and computational
methods to model and analyze real-world problems;

4. develop, analyze and implement algorithms using modern software engineering methods and
programming languages;

5. understand the characteristics of a range of computing platforms and their advantages and
limitations;

6. choose from multiple programming paradigms, languages and algorithms to solve a given
problem adequately;

7. apply the necessary mathematical methods, such as linear algebra, analysis, calculus, and
discrete mathematics;

8. recognize the context in which data science and software systems operate, including
interactions with people and the physical world;

9. describe the state of published knowledge in the field of software, data and technology and in
a chosen specialization (Machine Learning, Software Development, Programming Languages);

10. analyze and model real-life scenarios in organizations and industries using contemporary
techniques of data science and software development, also taking methods and insights of
other disciplines into account;

11. appropriately communicate solutions of problems in software, data and technology in both
spoken and written form to specialists and non-specialists;

12. draw scientifically founded conclusions that consider social, professional, scientific, and ethical
aspects;

13. work effectively in a diverse team and take responsibility in a team;

14. take responsibility for their own learning, personal and professional development and role in
society, reflecting on their practice and evaluating critical feedback;

15. adhere to and defend ethical, scientific, and professional standards.

1.3.2

10

1.4 Career Options and Support

The Software, Data and Technology program at Constructor University offers students a wide range of
career opportunities in the rapidly growing fields of computer science. As two of the key disciplines of
the 21st century, software, data and technology affect almost all modern industries, making the job
market highly favorable for graduates with a degree in this field. The program equips students with
the skills and knowledge necessary to excel in various roles such as data scientist, data analyst,
software engineer, full-stack developer, information systems manager, database administrator,
application developer, machine learning engineer, IT consultant, and system analyst.

In addition to the broad range of career options available to graduates, the program also boasts strong
industry partnerships with companies such as JetBrains, Acronis, Alemira, Virtuozzo, Rolos, and others.
These partnerships provide students with valuable opportunities for internships, networking, and
career development.

The Career Service Center (CSC) helps students in their career development. It provides students with
high-quality training and coaching in CV creation, cover letter formulation, interview preparation,
effective presenting, business etiquette, and employer research as well as in many other aspects, thus
helping students identify and follow up on rewarding careers after graduating from Constructor
University. Furthermore, the Alumni Office helps students establish a long-lasting and global network
which is useful when exploring job options in academia, industry, and elsewhere.

1.5 Admission Requirements

Admission to Constructor University is selective and based on a candidate’s school and/or university
achievements, recommendations, self-presentation, and performance on standardized tests. Students
admitted to Constructor University demonstrate exceptional academic achievements, intellectual
creativity, and the desire and motivation to make a difference in the world.

The following documents need to be submitted with the application:

• Recommendation Letter (optional)
• Official or certified copies of high school/university transcripts
• Educational History Form
• Standardized test results (SAT/ACT) if applicable
• Motivation statement
• ZeeMee electronic resume (optional)
• Language proficiency test results (TOEFL Score: 90, IELTS: Level 6.5 or equivalent)

Formal admission requirements are subject to higher education law and are outlined in the Admission
and Enrollment Policy of Constructor University.

For more detailed information about the admission visit: https://constructor.university/admission-
aid/application-information-undergraduate

https://constructor.university/admission-aid/application-information-undergraduate
https://constructor.university/admission-aid/application-information-undergraduate

11

1.6 More information and contacts

For more information on the study program, please contact the Study Program Coordinator:

Prof. Dr. Alexander Omelchenko

Professor of Applied Mathematics, Data Science and Computing

Email: aomelchenko@constructor.university

or visit our program website: https://constructor.university/programs/undergraduate-
education/data-science-software-development

For more information on Student Services please visit:

https://constructor.university/student-life/student-services

https://jacobsuniversity.sharepoint.com/sites/Proj.ProgramHandbooks/Shared%20Documents/10%20Data%20Science%20and%20Software%20Development%20BSc_MSc/2023/BSc%20Software,%20Data%20and%20Technology/aomelchenko@constructor.university
https://constructor.university/programs/undergraduate-education/data-science-software-development
https://constructor.university/programs/undergraduate-education/data-science-software-development
https://constructor.university/student-life/student-services

12

Figure 1: The Constructor University 4C-Model

2 The Curricular Structure

2.1 General

The curricular structure provides multiple elements for enhancing employability, interdisciplinarity,
and internationality. The unique CONSTRUCTOR Track, offered across all undergraduate study
programs, provides comprehensive tailor-made modules designed to achieve and foster career
competency. Additionally, a mandatory internship of at least two months after the second year of
study and the possibility to study abroad for one semester give students the opportunity to gain insight
into the professional world, apply their intercultural competences and reflect on their roles and
ambitions for employment and in a globalized society.

All undergraduate programs at Constructor University are based on a coherently modularized
structure, which provides students with an extensive and flexible choice of study plans to meet the
educational aims of their major as well as minor study interests and complete their studies within the
regular period.

The framework policies and procedures regulating undergraduate study programs at Constructor
University can be found on the website (https://constructor.university/student-life/student-
services/university-policies).

2.2 The Constructor University 4C Model

Constructor University offers study programs that comply with the regulations of the European Higher
Education Area. All study programs are structured according to the European Credit Transfer System
(ECTS), which facilitates credit transfer between academic institutions. The three-year undergraduate
programs involve six semesters of study with a total of 180 ECTS credit points (CP). The undergraduate
curricular structure follows an innovative and student-centered modularization scheme - the 4C
Model. It groups the disciplinary content of the study program in three overarching themes, CHOICE-
CORE-CAREER according to the year of study, while the university-wide CONSTRUCTOR Track is
dedicated to multidisciplinary content dedicated to methods as well as intellectual skills and is
integrated across all three years of study. The default module size is 5 CP, with smaller 2.5 CP modules
being possible as justified exceptions, e.g. if the learning goals are more suitable for 2.5 CP and the
overall student workload is balanced.

Year1

CHOICE

Students have the CHOICE
to decide on their major
after the first year.

>

4C Curriculum
Year2

CORE

Students study the CORE
elements of their major and
may choose a minor.

Year 1-3

Year3

CAREER

Students enhance their CAREER
skills and prepare for the job market,
graduale school and society.

CONSTRUCTOR Track

CONSTRUCTOR Track teaches multidisciplinary skills, competences and methods
and is integrated across all three years of study.

https://constructor.university/student-life/student-services/university-policies
https://constructor.university/student-life/student-services/university-policies

13

 Year 1 – CHOICE

The first study year is characterized by a university-specific offering of disciplinary education that builds
on and expands upon the students’ entrance qualifications. Students select introductory modules for
a total of 45 CP from the CHOICE area of a variety of study programs, of which 15-45 CP will be from
their intended major. A unique feature of our curriculum structure allows students to select their major
freely upon entering Constructor University. The team of Academic Advising Services offers curriculum
counseling to all Bachelor students independently of their major, while Academic Advisors, in their
capacity as contact persons from the faculty, support students individually in deciding ontheir major
study program.

To pursue a SDT major, the following CHOICE modules (30 CP) need to be taken as mandatory (m)
modules during the first year of study:

• CHOICE Module: Programming in C and C++ (m, 7.5 CP)

• CHOICE Module: Mathematical Foundations of Computer Science (m, 7.5 CP)

• CHOICE Module: Core Algorithms and Data Structures (m, 7.5 CP)

• CHOICE Module: Development in JVM Languages (m, 7.5 CP)

The remaining two own CHOICE modules (15 CP) can be selected in the first year of study according to
interest and/or with the aim of pursuing a minor or allowing a change of major up until the beginning
of the second semester or after the first year, when the major becomes fixed. For students not
pursuing a minor the following module is recommended in the first and second semester:

• CHOICE module: Analysis (me, 7.5 CP) or Scientific Programming with Python (me, 7.5 CP)
• CHOICE module: Linear Algebra (me, 7.5 CP) or Digital Systems and Computer Architecture

(me, 7.5 CP)

In total, the first-year modules lay the foundation for the second year of education within the SDT
major.

Students can still change to another major at the beginning of their second year of studies, provided
they have taken the corresponding mandatory CHOICE modules in their first year of studies. All
students must participate in an entry advising session with their Academic Advisors to learn about their
major change options and consult their Academic Advisor prior to changing their major.

Students that would like to retain a further option are strongly recommended to additionally register
for the CHOICE modules of one of the following study programs in their first year:

• Computer Science (CS)
CHOICE Module: Programming in C and C++ (7.5 CP)
CHOICE Module: Algorithms and Data Structures (7.5 CP)
CHOICE Module: Mathematical Foundations of Computer Science (7.5 CP)
CHOICE Module: Digital Systems and Computer Architecture (7.5 CP)

• International Relations: Politics and History (IRPH)
CHOICE Module: Introduction to International Relations Theory (m, 7.5 CP)
CHOICE Module: Introduction to Modern European History (m, 7.5 CP)

2.2.1

Sharma, Smriti
Please check if the phrasing is fine.

14

• Integrated Social and Cognitive Psychology (ISCP)
CHOICE Module: Essentials of Cognitive Psychology (m, 7.5 CP)
CHOICE Module: Essentials of Social Psychology (m, 7.5 CP)

To allow further major changes after the first semester the students are strongly recommended to
register for the CHOICE modules of one of the following study programs:

• Physics and Data Science (PHDS)
CHOICE Module: Classical Physics (m, 7.5 CP)
CHOICE Module: Scientific Programming with Python (m, 7.5 CP)
CHOICE Module: Modern Physics (m, 7.5 CP)
CHOICE Module: Mathematical Modeling (m, 7.5 CP)

• Mathematics, Modeling and Data Analytics (MMDA)
CHOICE Module: Analysis (m, 7.5 CP)
CHOICE Module: Scientific Programming with Python (m, 7.5 CP)
CHOICE Module: Linear Algebra (m, 7.5 CP)
CHOICE Module: Mathematical Modelling (m, 7.5 CP)

• Robotics and Intelligent Systems (RIS)
CHOICE Module: Programming in C and C++ (m, 7.5 CP)
CHOICE Module: Digital Systems and Computer Architecture (m, 7.5 CP)
CHOICE Module: General Electrical Engineering I (m, 7.5 CP)
CHOICE Module: Algorithms and Data Structures (m, 7.5 CP)

The module descriptions can be found in the respective Study Program Handbook.

 Year 2 – CORE

In their second year, students take a total of 45 CP from a selection of in-depth, discipline-specific CORE
modules. Building on the introductory CHOICE modules and applying the methods and skills acquired
thus far (see 2.3.1), these modules aim to expand students’ critical understanding of the key theories,
principles, and methods in their major for the current state of knowledge and best practice.

To pursue SDT as a major, the following mandatory (m) CORE modules (25 CP) must be taken:

• CORE Module: Operating Systems (m, 7.5 CP)

• CORE Module: Software Engineering and Design (m, 7.5 CP)

• CORE Module: Advanced Algorithms and Data Structures (m, 5 CP)

• CORE Module: Machine Learning (m, 5 CP)

Furthermore, students who are not pusuing a minor should take the following mandatory elective (me)
modules:

• CORE Module: Functional Programming (me, 5 CP) OR Scientific Data Analysis (me, 5 CP)
• CORE Module: Database Fundamentals (me, 5 CP)
• CORE Module: Discrete Mathematics (me, 5 CP) OR Artificial Intelligence (me, 5 CP)

2.2.2

15

2.2.2.1 Minor Option

SDT students can take CORE modules (or more advanced Specialization modules) from a second
discipline, which allows them to incorporate a minor study track into their undergraduate education,
within the 180 CP required for a bachelor’s degree. The educational aims of a minor are to broaden
the students’ knowledge and skills, support the critical reflection of statements in complex contexts,
foster an interdisciplinary approach to problem-solving, and to develop an individual academic and
professional profile in line with students’ strengths and interests. This extra qualification will be
highlighted in a student`s final transcript.

The Academic Advising Coordinator, Academic Advisor, and the Study Program Chair of the minor
study program support students in the realization of their minor selection; the consultation with the
Academic Advisor is mandatory when choosing a minor.

As a rule, this requires SDT students to substitute the CORE modules "Databases Fundamentals",
"Functional Programming OR Scientific Data Analysis" and “Discrete Mathematics OR Artificial
Intelligence” in the second year (15 CP total) with the default minor CORE modules of the minor study
program.

The requirements for the specific minors are described in the handbook of the study program offering
the minor and are marked in the respective Study and Examination Plans. For an overview of accessible
minors, please check the Major/Minor Combination Matrix, which is published at the beginning of each
academic year.

 Year 3 – CAREER

During their third year, students prepare and make decisions about their career path after graduation.
To explore available choices and to gain professional experience, students undertake a mandatory
summer internship. The third year of studies allows SDT students to take Specialization modules within
their discipline, but also focuses on the responsibility of students beyond their discipline (see
CONSTRUCTOR Track).

The fifth semester also opens a mobility window for a diverse range of study abroad options. Finally,
the sixth semester is dedicated to fostering the students’ research experience by involving them in an
extended Bachelor thesis project.

2.2.3.1 Internship / Start-up and Career Skills Module

As a core element of Constructor University’s employability approach students are required to engage
in a mandatory two-month internship of 15 CP that will usually be completed during the summer
between the second and third years of study. This gives students the opportunity to gain first-hand
practical experience in a professional environment, apply their knowledge and understanding in a
professional context, reflect on the relevance of their major to employment and society, reflect on
their own role in employment and society, and find a professional orientation. The internship can also
establish valuable contacts for the students’ Bachelor’s thesis project, for the selection of a Master
program graduate school or further employment after graduation. This module is complemented by
career advising and several career skills workshops throughout all six semesters that prepare students
for the transition from student life to professional life. As an alternative to the full-time internship,
students interested in setting up their own company can apply for a start-up option to focus on
developing of their business plans.

2.2.3

16

For further information, please contact the Career Service Center (CSC)
(https://constructor.university/student-life/career-services).

2.2.3.2 Specialization Modules

In the third year of their studies, students take 15 CP from major-specific or major-related, advanced
Specialization Modules to consolidate their knowledge and to be exposed to state-of-the-art research
in the areas of their interest. This curricular component is offered as a portfolio of modules, from which
students can make free selections within a track during their fifth and sixth semester. The three
specialization tracks are: Data Science, Software Development and Programming languages. The
default Specialization Module size is 5 CP, with smaller 2.5 CP modules being possible as justified
exceptions.

To pursue SDT as a major, 15 CP from the following major-specific Specialization modules within one
track need to be taken:

Data Science track:

• SDT Specialization: Optimization Methods (me, 5 CP)

• SDT Specialization: Stochastic Modeling and Financial Mathematics (me, 5 CP)

• MSc CSSE CORE: Deep Learning (me, 5 CP)

• SDT Specialization: Natural Language Processing (me, 5 CP)

Software Development track:

• SDT Specialization: Databases Internals (me, 5 CP)

• SDT Specialization: Integrated Development and IT Operations (me, 5 CP)

• SDT Specialization: Parallel Programming (me, 5 CP)

• CS Specialization: Distributed Algorithms (me, 5 CP)

• CS CORE: Computer Networks (me, 5 CP)

Programming Languages track:

• SDT Specialization: Formal Languages and Parsers (me, 5 CP)

• SDT Specialization: Compilers (me, 5 CP)

• SDT Specialization: Semantics of Programming Languages (me, 5 CP)

Specialization modules are designed to allow an SDT student to become more focused on a particular
subject of their choice within the SDT program or an affiliated program. The intention is to
simultaneously support their personal development and career choices.

https://constructor.university/student-life/career-services

17

2.2.3.3 Study Abroad

Students have the opportunity to study abroad for a semester to extend their knowledge and abilities,
broaden their horizons and reflect on their values and behavior in a different context as well as on
their role in a global society. For a semester abroad (usually the 5th semester), modules related to the
major with a workload equivalent to 22.5 CP must be completed. Modules recognized as study abroad
CP need to be pre-approved according to Constructor University study abroad procedures. Several
exchange programs allow students to directly enroll at prestigious partner institutions worldwide.
Constructor University’s participation in Erasmus+, the European Union’s exchange program, provides
an exchange semester at a number of European universities that include Erasmus study abroad
funding.

For further information, please contact the International Office (https://constructor.university/
student-life/study-abroad/international-office).

SDT students that wish to pursue a study abroad in their fifth semester are required to select their
modules at the study abroad partners such that they can be used to substitute between 10-15 CP of
major-specific Specialization modules and between 5-15 CP of modules equivalent to the non-
disciplinary New Skills modules (see CONSTRUCTOR Track). In their sixth semester, according to the
study plan, returning study-abroad students complete the Bachelor Thesis/Seminar module (see next
section), they take any missing Specialization modules to reach the required 15 CP in this area, and
they take any missing New Skills modules to reach 15 CP in this area.

2.2.3.4 Bachelor Thesis/Seminar Module

This module is a mandatory graduation requirement for all undergraduate students. It consists of two
module components in the major study program guided by a Constructor University faculty member:
the Bachelor Thesis (12 CP) and a Seminar (3 CP). The title of the thesis will appear on the students’
transcripts.

Within this module, students apply the knowledge skills, and methods they have acquired in their
major discipline to become acquainted with actual research topics, ranging from the identification of
suitable (short-term) research projects, preparatory literature searches, the realization of discipline-
specific research, and the documentation, discussion, and interpretation of the results.

With their Bachelor Thesis students demonstrate mastery of the contents and methods of their major-
specific research field. Furthermore, students show the ability to analyze and solve a well-defined
problem with scientific approaches, a critical reflection of the status quo in scientific literature, and
the original development of their own ideas. With the permission of a Constructor University Faculty
Supervisor, the Bachelor Thesis can also have an interdisciplinary nature. In the seminar, students
present and discuss their theses in a course environment and reflect on their theoretical or
experimental approach and conduct. They learn to present their chosen research topics concisely and
comprehensively in front of an audience and to explain their methods, solutions, and results to both
specialists and non-specialists.

2.3 The CONSTRUCTOR Track

The CONSTRUCTOR Track is another important feature of Constructor University’s educational model.
The CONSTRUCTOR Track runs parallel to the disciplinary CHOICE, CORE, and CAREER modules across
all study years and is an integral part of almost all undergraduate study programs. It reflects a

https://constructor.university/%20student-life/study-abroad/international-office
https://constructor.university/%20student-life/study-abroad/international-office

18

university-wide commitment to help transform late-stage adolescents into confident, competent and
responsible young adults by providing an intellectual tool kit to become life-long learners and by giving
them the capacity to employ a range of methodologies to approach potential solutions to problems
across disciplines. The CONSTRUCTOR track contains Methods, New Skills and German
Language/Humanities modules.

 Methods Modules

Methods such as mathematics, statistics, programming, data handling, presentation skills, academic
writing, and scientific and experimental skills are offered to all students as part of the Methods area in
their curriculum. The modules that are specifically assigned to each study program equip students with
transferable academic skills. They convey and practice specific methods that are indispensable for each
students’ chosen study program. Students are required to take 20 CP in the Methods area. The size of
all Methods modules is 5 CP.

To pursue Software, Data and Technologyas a major, the following Methods modules (20 CP) need to
be taken as mandatory modules:

• Methods Module: Elements of Linear Algebra (m, 5 CP)

• Methods Module: Elements of Calculus (m, 5 CP)

• Methods Module: Probability and Random Processes (m, 5 CP)

• Methods Module: Statistics and Data Analytics (m, 5 CP)

Students who have a strong mathematical background can also choose Matrix Algebra & Advanced
Calculus I and II (me, 5 CP each) instead of Elements of Linear Algebra and Elements of Calculus.

 New Skills Modules

This part of the curriculum constitutes the intellectual and conceptual tool kit, and is designed to
cultivate and nurture the capacity for a particular set of intellectual dispositions – curiosity,
imagination, critical thought, transferability – as well as a range of individual and societal capacities –
self-reflection, argumentation and communication – and to introduce students to the normative
aspects of inquiry and research – including the norms governing sourcing, sharing, withholding
materials and research results as well as others governing the responsibilities of expertise as well as
the professional point of view.

All students are required to take the following modules in their second year:

• New Skills Module: Logic (m, 2.5 CP)
• New Skills Module: Causation and Correlation (m, 2.5 CP)

These modules will be offered with two different perspectives from which the students can choose.
The module perspectives are independent modules which examine the topic from different points of
view. Please see the module description for more details.

2.3.1

2.3.2

19

In the third year, students take three 5 CP modules that build upon previous modules in the track and
are partially constituted by modules that are more closely linked to each student’s disciplinary field of
study. The following module is mandatory for all students:

• New Skills Module: Argumentation, Data Visualization and Communication (m, 5 CP)

This module will also be offered with two different perspectives of which the students can choose.

In their fifth semester, students may choose between:

• New Skills Module: Linear Model/Matrices (me, 5 CP) and

• New Skills Module: Complex Problem Solving (me, 5 CP).

The sixth semester also contains the choice between two modules, namely:

• New Skills Module: Agency, Leadership and Accountability (me, 5 CP) and

• New Skills Module: Community Impact Project (me, 5 CP).

Students who study abroad during the fifth semester and are not substituting the mandatory
Argumentation, Data Visualization and Communication module, are required to take this module
during their sixth semester. Students who remain on campus are free to take the Argumentation, Data
Visualization and Communication module in person in either the fifth or sixth semester as they prefer.

 German Language and Humanities Modules

German language abilities foster students’ intercultural awareness and enhance their employability in
their host country. They are also beneficial for securing mandatory internships (between the 2nd and
3rd year) in German companies and academic institutions. Constructor University supports its students
in acquiring basic as well as advanced German skills in the first year of the Constructor Track. Non-
native speakers of German are encouraged to take 2 German modules (2.5 CP each), but are not
obliged to do so. Native speakers and other students not taking advantage of this offering
take alternative modules in Humanities in each of the first two semesters:

• Humanities Module: Introduction to Philosophical Ethics (me, 2.5 CP)

• Humanities Module: Introduction to the Philosophy of Science (me, 2.5 CP)

• Humanities Module: Introduction to Visual Culture (me, 2.5 CP)

2.3.3

20

3 Software Development as a minor

3.1 Qualification Aims

Students obtaining a Minor in Software Development will gain a foundational understanding of key
principles and practices in computer science and data science. They will learn programming languages
such as Python and C++, core algorithms and data structures, computer architecture, advanced
algorithms, and machine learning. Upon completion of the minor, students will have acquired
sufficient knowledge to effectively collaborate with professionals in the fields of computer science and
data science. They will be able to apply their knowledge and skills to drive digitalization processes and
develop efficient solutions for problems in their domain. Students majoring in a technical discipline
can obtain this minor to complement their skills and deepen their understanding of software and
hardware components. The minor will prepare students to work in a variety of industries and sectors,
where they can leverage their knowledge to analyze data, design software systems, and develop
innovative solutions to complex problems.

3.2 Intended Learning Outcomes

With a minor in Software Development, students will be able to

• apply key principles and practices in computer science and data science to design, develop,
and deploy software systems.

• analyze data, develop efficient algorithms, and apply machine learning techniques to solve
complex problems.

• work collaboratively with professionals in the fields of computer science and data science,
communicate effectively with stakeholders, and understand the technical aspects of a
solution.

• gain a deep understanding of programming languages such as Python and C++, core algorithms
and data structures, computer architecture, advanced algorithms, and machine learning.

• evaluate design choices and assess their impact on the efficiency and effectiveness of a
solution.

• prepare to work in a variety of industries and sectors, where they can leverage their knowledge
and skills to develop innovative solutions to complex problems.

3.3 Module Requirements

The following mandatory modules need to be taken in order to receive a minor:

• Programming in C and C++ (m, 7,5 CP)
• Core Algorithms and Data Structures (m, 7,5 CP)
• Functional Programming (m, 5 CP)
• Scientific Data Analysis (m, 5 CP)
• Machine Learning (m, 5 CP)

3.4 Degree

After successful completion, the minor in Data Science and Software Design will be listed on the final
transcript under PROGRAM OF STUDY and BA/BSc – [name of the major] as “(Minor: Software
Development).”

21

4 Software, Data and Technology Undergraduate Program Regulations

4.1 Scope of these Regulations

The regulations in this handbook are valid for all students who entered the Software, Data and
Technology undergraduate program at Constructor University in Fall 2024. In the case of a conflict
between the regulations in this handbook and the general Policies for Bachelor studies, the latter
applies (see https://constructor.university/student-life/student-services/university-policies).

In exceptional cases, certain necessary deviations from the regulations of this study handbook might
occur during the course of study (e.g., change of the semester sequence, assessment type, or the
teaching mode of courses).

In general, Constructor University reserves therefore the right to change or modify the regulations of
the program handbook according to relevant policies and processes also after its publication at any
time and in its sole discretion.

4.2 Degree

Upon successful completion of the study program, students are awarded a Bachelor of Science degree
in Software, Data and Technology.

4.3 Graduation Requirements

In order to graduate, students need to obtain 180 CP. In addition, the following graduation
requirements apply:

Students need to complete all mandatory components of the program as indicated in the Study and
Examination Plan in Chapter 6 of this handbook.

https://constructor.university/student-life/student-services/university-policies

22

5 Schematic Study Plan for Software, Data and Technology

Figure 2 schematically shows the sequence and types of modules required for the study program. A more detailed description, including the assessment types, is given in the
Study and Examination Plan in the following section.

C>ONSTRUCTOR
UN IVERSITY

Software, Data and Technology (180 CP)

CHOICE / CORE / CAREER 3 x 45 = 135 CP

1

Bachelor Thesis / Seminar

m 15CP 1 Summer lnternship / Start-Up
(after 2nd year)

Specialization Specialization Specialization
me, 5 CP me, 5 CP me, 5 CP m, 15CP

~-----------------------------

Machine Learning
Database Discrete Mathematics OR Software Engineering

Fundamentals Artificial lntelligence and Design
m, 5CP me, 5 CP me, 5 CP m 7.5 CF

Functional Scientific Advanced Algorithms and Data
Operating Systems Programming Data Analysis Structures

me, 5 CP me 5CP m, 5CP m, 7.5 CP

Core Algorithms and Data Development in JVM
Own Selection

Structures Languages
m, 7.5CP m, 7.5CP me, 7.5 CP

Programming in C/C++
Mathematical Foundations of

Own Selection
Computer Science

m, 7.5CP m, 7.5CP me, 7.5 CP

C>ONSTRUCTOR

CONSTRUCTOR Track 45 CP

Agency, Leadership &
Accountability OR Community

Impact Project
Argumentation,

me, 5CP Data Visualization
and

Communication** Linear Model/ Matrices OR
Complex Problem Solving

m, 5CP me, 5 CP

□
Statistics and Data

Analytics
m, 5CP

Probability and Random

□ Processes
m, 5CP

German /
Elements of Calculus Humanities

m, 5CP me, 2.5 CP

German /
Elements of Linear Humanities

Algebra
m, 5CP me, 2.5 CP

Minor Option in
Software Development (30 CP) CP: Credit Points m: mandatory Study abroad Option in 5th ** Different module

·----- - - - - -------- - - - - -------- _1 me: mandatory elective Semester (22.5 CP) perspectives available

23

6 Study and Examination Plan

Software, Data, and Technology BSc
Matriculation Fall 2024

Program-Specific Modules Type Assessment Period Status¹ Sem. ECTS Construtor Track Modules (General Education) Type Assessment Period Status¹ Sem. ECTS

Year 1 - CHOICE 45 15
Take the mandatory CHOICE unit (s) listed below, this is a requirement for the SDT program.

Unit: Mathematics 15 Unit: Skills / Methods 10
CH-233 Module: Mathematical Foundations of Computer Science m 1 7.5 Unit: Methods 10
CH-233-A Mathematical Foundations of Computer Science Lecture 5 CTMS-MAT-24 Module: Elements of Linear Algebra me 1 5
CH-233-B Mathematical Foundations of Computer Science Tutorial Tutorial 2.5 CTMS-24 Elements of Linear Algebra Lecture Written examination Examination period

Unit: Programming 15 CTMS-MAT-25 Module: Elements of Calculus me 2 5
CH-230 Module: Programming in C and C++ (Default minor) m 1 7.5 CTMS-25 Elements of Calculus Lecture Written examination Examination period
CH-230-A Programming in C and C++ Lecture Written examination Examination period 5
CH-230-B Programming in C and C++ Tutorial Tutorial Program Code During the semester 2.5 CTMS-MAT-22 Module: Matrix Algebra & Advanced Calculus I me 1 5
SDT-103 Module:Development in JVM Languages m 2 7.5 CTMS-22 Matrix Algebra & Advanced Calculus I Lecture Written examination Examination period

SDT-103-A Development in JVM Languages Lecture Written examination Examination period 2.5 CTMS-MAT-23 Module: Matrix Algebra & Advanced Calculus II me 2 5
SDT-103-B Development in JVM Languages Tutorial Program Code During the semester 5 CTMS-23 Matrix Algebra & Advanced Calculus II Lecture Written examination Examination period

Unit: Data Science 7.5
SDT-102 Module: Core Algoriths & Data Structures (Default minor) m 2 7.5 Unit: German Language and Humanities (choose one module for each sememster) 5
SDT-102-A Core Algorithms and Data Structures Lecture Written examination Examination period 5 CTLA- Module: Language 1 me 1 2.5
SDT-102-B Core Algorithms and Data Structures Lab Lab Program Code During the semester 2.5 CTLA- Language 1 Seminar Various Various

Unit: Further CHOICE modules me 7.5 CTLA- Module: Language 2 me 2 2.5
CTLA- Language 2 Seminar Various Various

CH-150 Module: Analysis me 1 7.5 CTHU-HUM-001 Humanities Module: Introduction into Philosophical Ethics me 2 2.5
CH-150-A Analysis Lecture Written examination Examination period CTHU-001 Introduction into Philosophical Ethics Lecture (online) Written examination Examination period
CH-151 Module: Linear Algebra me 2 7.5 CTHU-HUM-002 Humanities Module: Introduction to the Philosophy of Science me 1 2.5

CH-151-A Linear Algebra Lecture Written examination Examination period CTHU-002 Introduction to the Philosophy of Science Lecture (online) Written examination Examination period
SDT-104 Module: Scientific Programming with Python me 1 7.5 CTHU-HUM-003 Introduction to Visual Culture me 2 2.5

SDT-104-A Scientific Programming with Python Lecture Written examination Examination period 5 CTHU-003 Introduction to Visual Culture Lecture (online) Written examination Examination period
SDT-104-B Scientific Programming with Python - Lab Lab Program Code During the semester 2.5
CH-234 Module: Digital Systems and Computer Architecture me 2 7.5
CH-234-A Digital Systems and Computer Architecture Lecture 5
CH-234-B Digital Systems and Computer Architecture Tutorial Tutorial 2.5
Year 2 - CORE 45 15
Take all units listed below

Unit: Software Development 25 Unit: Methods 3+4 10
CO-562 Module: Operating Systems m 3 7.5 CTMS-MAT-12 Module: Probability and Random Processes m 3 5
CO-562-A Operating Systems Lecture Written examination Examination period CTMS-12 Probability and Random Processes Lecture Written examination Examination period
SDT-204 Module: Software Engineering and Design m 4 7.5 CTMS-MET-21 Module: Statistics and Data Analytics m 4 5
SDT-204-A Software Engineering and Design Lecture Written examination Examination period 2.5 CTMS-21 Statistics and Data Analytics Lecture Written examination Examination period
SDT-204-B Software Engineering and Design Project Project Program Code During the semester 5
SDT-205 Module: Database Fundamentals me 4 5
SDT-205-A Database Fundamentals Lecture Written examination Examination period 2.5 Unit: New Skills 5
SDT-205-B Database Fundamentals Project Project Program Code During the semester 2.5
Students take two further CORE module from those offered for all other study programs² if they intend to pursue a minor; in case of full major take both of the following modules CTNS-NSK-01 Module: Logic (perspective I) me 3 2.5
SDT-202 Module: Functional Programming (Default minor) me 3 5 CTNS-01 Logic (perspective I) Lecture (online) Written examination Examination period
SDT-202-A Functional Programming Lecture Written examination Examination period 2.5 CTNS-NSK-02 Module: Logic (perspective II) me 3 2.5

SDT-202-B Functional Programming Tutorial Tutorial Program Code During the semester 2.5 CTNS-02 Logic (perspective II) Lecture (online) Written examination Examination period
CO-489 Module: Scientific Data Analysis (Default minor) me 3 5
CO-489-A Scientific Data Analysis Lecture Portfolio assessment During the semester CTNS-NSK-03 Module: Causation and Correlation (perspective I) me 4 2.5

Unit: Data Science m 15 CTNS-03 Causation and Correlation (perspective I) Lecture (online) Written examination Examination period
SDT-201 Module: Advanced Algoriths and Data Structures m 3 5 CTNS-NSK-04 Module: Causation and Correlation (perspective II) me 4 2.5
SDT-201-A Advanced Algoriths and Data Structures Lecture Written examination Examination period 2.5 CTNS-04 Causation and Correlation (perspective II) Lecture (online) Written examination Examination period
SDT-201-B Advanced Algoriths and Data Structures Tutorial Tutorial Program Code During the semester 2.5
CO-541 Module: Machine Learning (Default minor) m 4 5
CO-541-A Machine Learning Lecture Written examination Examination period
Take one of the two modules listed below
CO-501 Module: Discrete Mathematics me 4 5
CO-501-A Discrete Mathematics Lecture Written examination Examination period
CO-547 Module: Artificial Intelligence me 4 5
CO-547-A Artificial Intelligence Lecture Written examination Examination period

Written examination Examination period

Choose one of the two modules

Choose one of the two modules

Examination period

Students who have a strong mathematical background can also choose the following instead of CTMS-MAT-24 and CTMS-MAT-25:

Students take two further CHOICE modules from those offered for all other study programs² if they intend to pursue a minor; in case of full major take two of the following modules

Written Examination

1

24

Year 3 - CAREER 45 15

CA-INT-900 Module: Summer Internship / Startup and Career Skills m 4/5 15 Unit: New Skills 15
CA-INT-900-0 Internship / Startup and Career Skills Internship Report or Business plan During the 5th semester Choose one of the two modules
SDT-400 Module: Bachelor Thesis and Seminar SDT m 6 15 CTNS-NSK-05 Module: Linear Model and Matrices me 5 5
SDT-400-T Thesis SDT Thesis Thesis 15th of May 12 CTNS-05 Linear Model and Matrices Online Lecture Written examination Examination period
SDT-400-S Thesis Seminar SDT Seminar Presentation During the semester 3 CTNS-NSK-06 Module: Complex Problem Solving me 5 5

Unit: Specialization (take a total 15 ECTS of specialization modules) 15 CTNS-06 Complex Problem Solving Online Lecture Written examination Examination period
Subunit: Machine Learning Choose one of the two modules

MCSSE-AI-01 Module: Deep Learning me 5 5 CTNS-NSK-07 Module: Argumentation, Data Visualization and Communication (perspective I) me 5/6 5
MCSSE-AI-01 Deep Learning Lecture Written examination Examination period CTNS-07 Argumentation, Data Visualization and Communication (perspective I) Online Lecture Written examination Examination period 5
CA-S-MMDA-803 Module: Stochastic Modeling and Financial Mathematics me 6 5 CTNS-NSK-08 Module: Argumentation, Data Visualization and Communication (perspective II) me 5/6 5
CA-MMDA-803 Stochastic Modeling and Financial Mathematics Lecture Portfolio Assessment During the semester CTNS-08 Argumentation, Data Visualization and Communication (perspective II) Online Lecture Written examination Examination period 6
SDT-301 Module: Optimization Methods me 5 5 Choose one of the two modules
SDT-301-A Optimization Methods Lecture Written examination Examination period 2.5 CTNS-NSK-09 Module: Agency, Leadership, and Accountability me 6 5
SDT-301-B Optimization Methods Tutorial Tutorial Program Code During the semester 2.5 CTNS-09 Agency, Leadership, and Accountability Online Lecture Written examination Examination period
SDT-305 Module: Natural Language Processing me 6 5 CTNS-CIP-10 Module: Community Impact Project me 5/6 5
SDT-305-A Natural Language Processing Lecture Written examination Examination period CTNS-10 Community Impact Project Project Project Examination period

Subunit: Software Development
SDT-302 Module: Databases Internals me 5 5
SDT-302-A Databases Internals Lecture Written examination Examination period
SDT-306 Module: Integrated Development and IT Operations me 6 5
SDT-306-A Integrated Development and IT Operations Lecture Written examination Examination period
SDT-303 Module: Parallel Programming me 5 5
SDT-303-A Parallel Programming Lecture Written examination Examination period
CA-S-CS-803 Module: Distributed Algorithms me 6 5
CA-CS-803 Distributed Algorithms Lecture Written examination Examination period
CO-564 Module: Computer Networks me 5 5
CO-564-A Computer Networks Lecture Written examination Examination period

Subunit Programming Languages
SDT-304 Module: Formal Languages and Parsers me 5 5
SDT-304-A Formal Languages and Parsers Lecture Written examination Examination period 2.5
SDT-304-B Formal Languages and Parsers Tutorial Tutorial Program Code During the semester 2.5
SDT-307 Module: Compilers me 6 5
SDT-307-A Compilers Lecture Written examination Examination period 2.5
SDT-307-B Compilers Project Project Program Code During the semester 2.5
SDT-308 Module: Semantics of Programming Languages me 6 5
SDT-308-A Semantics of Programming Languages Lecture Written examination Examination period 2.5
SDT-308-B Semantics of Programming Languages Tutorial Tutorial Program Code During the semester 2.5
Total ECTS 180
¹ Status (m = mandatory, me = mandatory elective)
² For a full listing of all CHOICE / CORE / CAREER / Constructor Track modules please consult the CampusNet online catalogue and /or the study program handbooks.
3 German native speakers will have alternatives to the language courses (in the field of Humanities). Humanities I and II are optional to all students, except for German native speakers.

Figure 2: Study and Examination Plan

1

25

7 Software, Data and Technology Modules

7.1 Programming in C and C++

Module Name Module Code Level (type) CP
Programming in C and C++ CH-230 Year 1 (CHOICE) 7.5

Module Components

Number Name Type CP

CH-230-A Programming in C and C++ Lecture 5

CH-230-B Programming in C and C++ - Tutorial Tutorial 2.5

Module
Coordinator

Dr. Kinga
Lipskoch

Program Affiliation

• Computer Science (CS)

Mandatory Status

Mandatory for CS, RIS, SDT
minor in RIS, minor CS and
minor in Software
Development
Mandatory elective for ECE

Entry
Requirements

Pre-requisites

☒ None

Co-requisites

☒ None

Knowledge, Abilities, or
Skills

Frequency

Annually
(Fall)

Forms of Learning and
Teaching
• Lecture attendance

(17,5 hours)
• Tutorial attendance (35

hours)
• Independent study (115

hours)
• Exam preparation (20

hours)
Duration

1 semester

Workload

187.5 hours

Recommendations for Preparation

It is recommended that students install a suitable programming environment on their notebooks. It is recommended to
install a Linux system such as Ubuntu, which comes with open-source compilers such as gcc and g++ and editors such as
vim or emacs. Alternatively, the open-source Code: Blocks integrated development environment can be installed to solve
programming problems.

Content and Educational Aims

This course offers an introduction to programming using the programming languages C and C++. After a short overview of
the program development cycle (editing, preprocessing, compiling, linking, executing), the module presents the basics of
C programming. Fundamental imperative programming concepts such as variables, loops, and function calls are
introduced in a hands-on manner. Afterwards, basic data structures such as multidimensional arrays, structures, and
pointers are introduced and dynamically allocated multidimensional arrays and linked lists and trees are used for solving
simple practical problems. The relationships between pointers and arrays, pointers and structures, and pointers and
functions are described, and they are illustrated using examples that also introduce recursive functions, file handling, and
dynamic memory allocation.

The module then introduces basic concepts of object-oriented programming languages using the programming language
C++ in a hands-on manner. Concepts such as classes and objects, data abstractions, and information hiding are introduced.
C++ mechanisms for defining and using objects, methods, and operators are introduced and the relevance of constructors,
copy constructors, and destructors for dynamically created objects is explained. Finally, concepts such as inheritance,

26

polymorphism, virtual functions, and overloading are introduced. The learned concepts are applied by solving
programming problems.

Intended Learning Outcomes

By the end of this module, students will be able to

1. explain basic concepts of imperative programming languages such as variables, assignments, loops, and
function calls;

2. write, test, and debug programs in the procedural programming language C using basic C library
functions;

3. demonstrate how to use pointers to create dynamically allocated data structures such as linked lists;
4. explain the relationship between pointers and arrays;
5. illustrate basic object-oriented programming concepts such as objects, classes, information hiding, and

inheritance;
6. give original examples of function and operator overloading and polymorphism;
7. write, test, and debug programs in the object-oriented programming language C++.

Indicative Literature

Brian Kernighan, Dennis Ritchie: The C Programming Language, 2nd edition, Prentice Hall Professional Technical
Reference, 1988.

Steve Oualline: Practical C Programming, 3rd edition, O'Reilly Media, 1997.

Bruce Eckel: Thinking in C++: Introduction to Standard C++, Prentice Hall, 2000.

Bruce Eckel, Chuck Allison: Thinking in C++: Practical Programming, Prentice Hall, 2004.

Bjarne Stroustrup: The C++ Programming Language, 4th edition, Addison Wesley, 2013.

Michael Dawson: Beginning C++ Through Game Programming, 4th edition, Delmar Learning, 2014.

Usability and Relationship to other Modules

• This module introduces the programming languages C and C++ and several other modules build on this
foundation. Certain features of C++ such as templates and generic data structures and an overview of the
standard template library will be covered in the Algorithms and Data Structures module.

Examination Type: Module Component Examinations

Component 1: Lecture

Assessment types: Written examination Duration: 120 min
 Weight: 67%
Scope: All theoretical intended learning outcomes of the module

Component 2: Tutorial

Assessment: Program code
 Weight: 33%
Scope: All practical intended learning outcomes of the module

Completion: To pass this module, the examination of each module component has to be passed with at least 45%.

27

7.2 Mathematical Foundations of Computer Science

Module Name Module Code Level (type) CP
Mathematical Foundations of Computer Science CH-233 Year 1 (CHOICE) 7.5

Module Components

Number Name Type CP

CH-233-A Mathematical Foundations of Computer Science Lecture 5.0

CH-233-B Mathematical Foundations of Computer Science Tutorial Tutorial

Module
Coordinator

Prof. Dr. Jürgen
Schönwälder

Program Affiliation

• Computer Science (CS)

Mandatory Status

Mandatory for CS and SDT

Entry
Requirements

Pre-requisites

☒ None

Co-requisites

☒ None

Knowledge, Abilities, or
Skills

Frequency

Anually
(Fall)

Forms of Learning and
Teaching

• Class (52.5 hours)
• Independent study (115

hours)
• Exam preparation (20

hours)

Duration

1 semester

Workload

187.5 hours

Recommendations for Preparation

It is recommended that students revise mathematical concepts from their high school education.

Content and Educational Aims

The module introduces students to the mathematical foundations of computer science. Students learn to reason logically
and clearly. They acquire the skill to formalize arguments and to prove propositions mathematically using elementary
logic. Students are also introduced to fundamental concepts of graph theory and elementary graph algorithms.

After establishing the concept of algorithms, the first part covers basic elements of discrete mathematics, leading to
Boolean algebra, propositional logic, and predicate logic. Students learn how to use fundamental proof techniques to
prove (or disprove) simple propositions. The second part of the module introduces students to basic concepts of algebraic
structures like groups, rings, and fields and different structure preserving maps (homomorphisms). Students study how
these abstract concepts relate to problems in computer science. The last part of the module covers the basic elements of
graph theory and the different representation of graphs. Elementary graph algorithms are introduced that have a wide
range of applicability in computer science.

Intended Learning Outcomes

By the end of this module, students will be able to

1. explain basic concepts and properties of algorithms;
2. understand the concept of termination and complexity metrics;
3. illustrate basic concepts of discrete math (sets, relations, functions);
4. use basic proof techniques and apply them to prove properties of algorithms;
5. summarize basic principles of Boolean algebra and propositional logic;
6. use predicate logic and outline concepts such as validity and satisfiability;
7. distinguish abstract algebraic structures such as groups, rings and fields;

28

8. classify different structure preserving maps (homomorphisms);
9. understand calculations in finite fields and their applicability to computer science;
10. explain elementary concepts of graph theory and use different graph representations;

11. outline basic graph algorithms (e.g., traversal, search, spanning trees).

Indicative Literature

• Eric Lehmann, F. Thomson Leighton, Albert R. Meyer: Mathematics for Computer Science, online 2018.

• Winfried K. Grassmann, Jean-Paul Tremblay: Logic and Discrete Mathematics: A Computer Science Perspective,
Pearson, 1996

Usability and Relationship to other Modules

This module introduces key mathematical concepts and teaches students to work with mathematical abstractions that
are relevant for computer science. The acquired skills are relevant for subsequent courses covering theoretical or abstract
aspects of computer science.

Examination Type: Module Examination

Assessment Type: Written examination Duration: 120 min
 Weight: 100%
Scope: All intended learning outcomes of the module

Module achievement: 50% of ten weekly assignments correctly solved. Two additional assignments are offered during the
semester and another assignment is offered in January to makeup missing points.

Completion: To pass this module, the examination has to be passed with at least 45%.

29

7.3 Analysis

Module Name Module Code Level (type) CP
Analysis CH-150 Year 1 (CHOICE) 7.5

Module Components

Number Name Type CP
CH-150-A Analysis Lecture 7.5

Module
Coordinator

Prof. Dr. Sören
Petrat

Program Affiliation

• Mathematics, Modeling and Data Analytics (MMDA)

Mandatory Status

Mandatory for MMDA and
minor in Mathematics
Mandatory elective for SDT

Entry
Requirements

Pre-requisites

☒ None

Co-requisites

☒ None

Knowledge, Abilities, or
Skills

• Good command of

high-school
mathematics, in
particular pre-calculus
topics

• Good command of
high-school calculus
helps, but is not a
prerequisite

Frequency

Annually
(Fall)

Forms of Learning and
Teaching

• Lectures (35 hours)
• Tutorials (17.5 hours)
• Private study (135

hours)
Duration

1 semester

Workload

187.5 hours

Recommendations for Preparation

• It is recommended to co-enroll in the Methods module “Matrix Algebra & Advanced Calculus I”
• Revise your high school mathematics
• Read general interest expositions about mathematics and mathematicians
• Work on mathematics problems over the summer

For a detailed set of preparation instruction, references, and links, see http://math.Constructor-
university.de/undergraduate/prepare/index.php

Content and Educational Aims

This module introduces fundamental concepts and techniques in a concise and rigorous way. The class conveys the
pleasure of doing mathematics, and motivates mathematics concepts from problems and concrete examples, but also
shows the power of abstraction and of formal reasoning.

The following topics will be covered:

• Proof by induction, and elementary combinatorics
• Groups, equivalence relations, and quotients
• Natural numbers, integers, rationals, and real numbers
• Sequences and series, and convergence
• Functions of a single real variable, continuity, and the intermediate value theorem,
• Metric spaces, and the continuous functions as a metric space
• Differentiation, mean value theorem, and the inverse mapping theorem in one variable
• Riemann integral
• Fundamental theorem of Calculus, and the integration by parts with applications
• Integral mean value theorem
• Change of variables

http://math.jacobs-university.de/undergraduate/prepare/index.php
http://math.jacobs-university.de/undergraduate/prepare/index.php

30

• Taylor series with integral and Lagrange remainders
• Elementary point-set topology (neighborhoods, open and closed sets, compactness, and Heine-Borel)

Intended Learning Outcomes
By the end of the module, students will be able to

1. cleanly formulate mathematical concepts and results discussed in class;
2. outline proofs which have been given in the lectures;
3. independently prove results which are direct consequences of those proved in the lectures;
4. understand and use fundamental mathematical terminology to communicate mathematics at a university

level.

Indicative Literature

W. Rudin (1976). Principles of Mathematical Analysis, third edition. New York: McGraw-Hill.
T. Tao (2016). Analysis, third edition. New Delhi: Hindustan Book Agency.

Usability and Relationship to other Modules

• This module is part of the core education in Mathematics, Modeling and Data Analytics.
• It is also valuable for students in Physics, Computer Science, RIS, and ECE, either as part of a minor in

Mathematics, or as an elective module.
• The curriculum is integrated with the curriculum of the module “Matrix Algebra and Advanced Calculus” in the

following way: “Matrix Algebra and Advanced Calculus” emphasizes the operational aspects, computational
skills, and intuitive understanding, while Analysis builds rigorous foundations of the field, emphasizing proof,
abstraction, and mathematical rigor.

Examination Type: Module Examination

Assessment Type: Written examination Duration: 120 min
 Weight: 100%
Scope: All intended learning outcomes of this module.

Completion: To pass this module, the examination has to be passed with at least 45%.

31

7.4 Scientific Programming with Python

Module Name Module Code Level (type) CP

Scientific Programming with Python SDT-104 Year 1 (CHOICE) 7.5

Module Components

Number Name Type CP

SDT-104-A Scientific Programming with Python Lecture 5.0

SDT-104-B Scientific Programming with Python Lab Lab 2.5

Module
Coordinator

Prof. Dr.
Alexander
Omelchenko

Program Affiliation

● Software, Data and Technology (SDT)

Mandatory Status

Mandatory for PHDS, MMDA
Mandatory elective for SDT,

Entry
Requirements

Pre-requisites

☒ None

Co-requisites

☒ None

Knowledge, Abilities, or
Skills

Frequency

Annually
(Fall)

Forms of Learning and
Teaching

● Class (52.5 hours)
● Independent study (115

hours)
● Exam preparation (20

hours)
Duration

1 semester

Workload

187.5 hours

Recommendations for Preparation
Set up a suitable programming environment.

Content and Educational Aims

The module establishes a solid foundation of imperative programming, emphasizing the Python programming language.
It enables students to write Python programs tackling problems across a spectrum of complexity using both foundational
and sophisticated programming techniques. Through engaging hands-on exercises and projects, students hone their
problem-solving and algorithmic thinking abilities. Additionally, this course strengthens their capacity to design, develop,
and evaluate robust, maintainable, and scalable software. It also sets the stage for advanced exploration and application
in programming and data science.

Content:

● Introduction to Imperative Programming: Overview of basic concepts of imperative programming languages,
including variables, assignments, loops, function calls, data structures, and more.

● Python Programming: Writing interactive programs in Python, working with user input, and testing and
debugging code.

● Object-Oriented Programming in Python: Overview of basic object-oriented programming concepts, such as
objects, classes, information hiding, inheritance, and function and operator overloading.

● File Input/Output in Python: Retrieving and processing data from/to files and generating data using Python.
● Scientific Computing with Python: Using NumPy arrays for vectorized code and SciPy for special functions and

black-boxed algorithms (root solvers, quadrature, ODE solvers, and fast Fourier transform).
● Visualization in Python: Visualizing data using Matplotlib.

32

Intended Learning Outcomes

By the end of this module, students will be able to:
1. explain basic concepts of imperative programming languages such as variables, assignments, loops,

function calls, data structures, etc.;
2. work with user input from the keyboard, write interactive Python programs;
3. write, test, and debug programs;
4. illustrate basic object-oriented programming concepts such as objects, classes, information hiding and

inheritance;
5. give original examples of function and operator overloading;
6. retrieve data and process and generate data from/to files;
7. apply advanced programming techniques including generators, decorators, context managers, and more;
8. write vectorized code using NumPy arrays;
9. use SciPy for special functions and black-boxed algorithms (root solvers, quadrature, ODE solvers, and fast

Fourier transform);
10. visualize data in appropriate ways using Matplotlib.

Indicative Literature

● Mark Lutz: "Learning Python", 5th edition, O'Reilly Media, 2013.

● Fluent Python, 2nd edition, O’Reilly Media, 2022 (ISBN: 9781492056355)

● Joel Grus: "Data Science from Scratch: First Principles with Python", 2nd edition, O'Reilly Media, 2019.

● Mark Summerfield: "Programming in Python 3: A Complete Introduction to the Python Language", 2nd edition,
Addison-Wesley Professional, (12 Nov.) 2009.

● David J. Pine: “Introduction to Python for Science and Engineering”, CRC Press, 2019.

● John V. Guttag: "Introduction to Computation and Programming Using Python", 2nd edition, MIT Press, 2016.

Usability and Relationship to other Modules

Examination Type: Module Examination

Component 1: Lecture

Assessment Type: Written examination Duration: 120 min
 Weight: 67%
Scope: All theoretical intended learning outcomes of the module

Component 2: Lab

Assessment Type: Program Code Weight: 33%

Scope: All practical intended learning outcomes of the module

Module achievement: 50% of weekly assignments correctly solved. Two additional assignments are offered during the
semester and another assignment is offered in January to makeup missing points.

Completion: To pass this module, the examination of each module component has to be passed with at least 45%.

33

7.5 Linear Algebra

Module Name Module Code Level (type) CP
Linear Algebra CH-151 Year 1 (CHOICE) 7.5

Module Components

Number Name Type CP

 CH-151 Linear Algebra Lecture 7.5

Module
Coordinator

Dr. Ivan
Ovsyannikov

Program Affiliation

• Mathematics, Modeling and Data Analytics (MMDA)

Mandatory Status

Mandatory for MMDA and
minor in Mathematics
Mandatory elective for SDT

Entry
Requirements

Pre-requisites

☒ None

Co-requisites

☒None

Knowledge, Abilities, or
Skills
• Basic matrix algebra at

the level achieved in
“Matrix Algebra and
Advanced Calculus”

Frequency

Annually
(Spring)

Forms of Learning and
Teaching

• Lectures (35 hours)
• Tutorials (17.5 hours)
• Private study (135

hours)
Duration

1 semester

Workload

187.5 hours

Recommendations for Preparation
• Revise your matrix algebra.
• Unless prepared otherwise, take the Methods module “Matrix Algebra and Advanced Calculus I” in the first

semester.

Content and Educational Aims

This module continues the introduction to Linear Algebra from the methods module “Matrix Algebra and Advanced
Calculus I”. The fundamental concepts and techniques of Linear Algebra are introduced in a rigorous and more abstract
way. The first half of this module covers vector spaces and linear maps, while the second half covers inner products and
geometry.

The following topics will be covered:

• Vector spaces
• Linear Operators
• Dual spaces
• Isomorphisms
• Connection to matrices
• Sums and direct sums
• Fundamental spaces of a linear operator
• Diagonalization of linear operators (on finite dimensional spaces)
• Cayley-Hamilton theorem
• Jordan decomposition
• Jordan normal form and its applications to linear differential equations
• Decomplexification and complexification
• Bilinear Forms and their classification
• Quadratic forms and orthogonalization
• Euclidean and unitary spaces

34

• Orthogonal and unitary operators
• Self-adjoint operators

Intended Learning Outcomes

By the end of the module, students will be able to

1. describe the concept of a vector space and linear operator in an abstract way
2. explain the connection of abstract linear algebra in the context of matrix algebra
3. discuss the proofs of the major theorems from class
4. illustrate the use of bilinear forms and their role in geometry
5. distinguish bilinear forms in the context of Euclidean, unitary and symplectic spaces

Indicative Literature

P.K. Kostrikin, Yu. Manin (1997) Linear Algebra and Geometry. London: Gordon and Breach.
S. Axler (2005) Linear Algebra Done Right, third edition. Berlin: Springer.
G. Strang (2016). Introduction to Linear Algebra. Wellesley: Wellesley-Cambridge Press, fifth edition.
S. Lang (1986). Introduction to Linear Algebra, second edition. Berlin: Springer.

Usability and Relationship to other Modules

• This module is part of the core education in Mathematics
• This module is valuable for students in Computer Science, RIS, and ECE, either as part of a minor in Mathematics,

or as an elective module
• The curriculum is integrated with the curriculum of the module “Matrix Algebra and Advanced Calculus I and II”

in the following way: “Matrix Algebra and Advanced Calculus I and II” emphasizes the operational aspects,
computational skills, and intuitive understanding, while Linear Algebra builds rigorous foundations of the field,
emphasizing proof, abstraction, and mathematical rigor.

Examination Type: Module Examination

Assessment Type: Written examination Duration: 120 min
 Weight:100%
Scope: All intended learning outcomes of this module

Completion: To pass this module, the examination has to be passed with at least 45%.

35

7.6 Digital Systems and Computer Architecture

Module Name Module Code Level (type) CP
Digital Systems and Computer Architecture CH-234 Year 1 (CHOICE) 7.5

Module Components

Number Name Type CP

CH-234-A Digital Systems and Computer Architecture Lecture 5.0

CH-234-B Digital Systems and Computer Architecture Tutorial Tutorial 2.5

Module
Coordinator

Prof. Dr. Jürgen
Schöwälder

Program Affiliation

• Computer Science (CS)

Mandatory Status

Mandatory for CS, RIS and ECE
Mandatory elective for SDT

Entry
Requirements

Pre-requisites

☒ None

Co-requisites

☒ None

Knowledge, Abilities, or
Skills

Frequency

Anually
(Spring)

Forms of Learning and
Teaching

• Class (52.5 hours)
• Independent study (115

hours)
• Exam preparation (20

hours)

Duration

1 semester

Workload

187.5 hours

Recommendations for Preparation

Content and Educational Aims

The module introduces the essential hardware components of a digital computer system. Students will learn how useful
digital circuits to add numbers or to store data can be constructed out of basic logic gates. Using these building blocks,
the module will introduce how a simple processor can be constructed and how it interacts with memory systems and
other components of a computer system. Students will practice the basics of assembler programming to understand
program execution at the hardware level.

Intended Learning Outcomes

By the end of this module, students will be able to
1. Understand the architecture of a digital computer;
2. explain the representation of numbers (integers and floats);
3. summarize basic laws of Boolean algebra;
4. describe basic logic gates and which Boolean functions they implement;
5. construct and analyze basic combinational digital circuits (e.g., adder, comparator, multiplexer);
6. design and analyze basic sequential digital circuits (e.g., latches, flip-flops);
7. outline the basic structure of the von Neumann computer architecture;
8. explain the execution of machine instructions on a von Neumann computer;
9. develop simple programs in an assembler language such as the RISC-V;
10. demonstrate how function calls are executed and the role of the stack;
11. understand microarchitectural concepts and the importance of the memory hierarchy;
12. explain the purpose and principles of operation of the components of a computer system.

36

Indicative Literature

• John L Hennessy, David A. Patterson: Computer Architecture: A Quantitative Approach, 6th edition, Morgan
Kaufmann, 2017

• Sarah Harris, David Harris: Digital Design and Computer Architecture: RISC-V Edition, Morgan Kaufmann, 2021

Usability and Relationship to other Modules

This module introduces students to the digital hardware components of a computer system. Students attain an
understanding of program execution at the hardware level. Other modules requiring an understanding of program
execution at the hardware level may require this module as a prerequisite.

Examination Type: Module Examination

Assessment Type: Written examination Duration: 120 min
 Weight: 100%
Scope: All intended learning outcomes of the module

Module achievement: 50% of ten weekly assignments correctly solved. Two additional assignments are offered during
the semester and another assignment is offered in August to makeup missing points.

Completion: To pass this module, the examination has to be passed with at least 45%.

37

7.7 Development in JVM Languages

Module Name
Development in JVM Languages

Module Code

SDT-103

Level (type)

Year 1 (CHOICE)

CP

7.5

Module Components

Number Name Type CP

SDT-103-A Development in JVM Languages Lectures 2.5

SDT-103-B Development in JVM Languages Tutorials 5

Module Coordinator

Prof. Dr. Aleksander
Omelchenko

Program Affiliation

• Software, Data and Technology (SDT)

Mandatory Status

Mandatory for SDT
Mandator elective for CS

Entry Requirements

Pre-requisites

☒ Programming in
C/C++

Co-requisites

☒ none

Knowledge, Abilities, or
Skills

Frequency

Annually
(Spring)

Forms of Learning and
Teaching

• Lecture attendance (35

hours)
• Tutorial attendance

(35 hours)
• Independent study

(97.5 hours)
• Exam preparation (20

hours)

Duration

1 semester

Workload

187.5 hours

Recommendations for Preparation

Students should refresh their knowledge of the C++ and Python programming language and be able to solve simple
programming problems in C++ and Python. Students are expected to have a working programming environment.

Content and Educational Aims

In this module students will learn about the Kotlin programming language, a modern, powerful and expressive language
that is used for various purposes from android development, web development to data science. Students will learn how
to apply Kotlin to solve practical problems in software development and will learn about data types, variables and control
flow, functions, object-oriented programming, exception handling, collections and generics, lambdas, and higher-order
functions. They will also learn about the unique features of Kotlin such as null safety, extension functions and type
inference.

Educational Aims:

• To provide students with a solid foundation in the Kotlin programming language
• To teach students how to apply Kotlin to solve practical problems in software development
• To enable students to write efficient, readable and maintainable code using Kotlin
• To familiarize students with the unique features of Kotlin such as null safety, extension functions, and type

inference
• To prepare students for using Kotlin in Android Development.
• To give students a deeper understanding of the fundamental concepts of computer science, such as algorithms

and data structures and how they can be applied to software development.

38

Intended Learning Outcomes

Upon completion of this module, students will be able to

1. write, understand and debug Kotlin code effectively.
2. use the unique features of Kotlin to write readable, maintainable and expressive code.
3. use Kotlin to solve practical problems in software development.
4. design and implement object-oriented programs in Kotlin.
5. use Kotlin collections and Generics in their programs.
6. use Lambdas and Higher-Order functions in Kotlin.
7. use Kotlin for android development.
8. write efficient and optimized code using Kotlin.
9. use Kotlin for web development.
10. use Kotlin for data science.

Indicative Literature

• Venkat Subramaniam: Programming Kotlin, Pragmatic Bookshelf, 2017.
• Hadi Hariri: Kotlin in Action, Manning Publications, 2017.
• Dmitry Jemerov and Svetlana Isakova: Kotlin in Practice, JetBrains, 2016.
• Antonio Leiva: Kotlin for Android Developers, Leanpub, 2015.
• Marcin Moskala: Kotlin Programming, Packt Publishing, 2018.

Usability and Relationship to other Modules

● Familiarity with Kotlin programming language is essential for students who wish to specialize in android
development, web development or data science. This module will provide a solid foundation in Kotlin
programming, including its unique features such as null safety, extension functions, and type inference.
Additionally, this module will introduce advanced concepts of programming that are needed in advanced
programming-oriented modules in the 2nd and 3rd years of the SDT program.

Examination Type: Module Component Examination

Component 1: Lecture

Assessment: Written examination Duration: 60 min
 Weight: 33%
Scope: All theoretical intended learning outcomes of the module

Component 2: Tutorial

Assessment: Program Code Weight: 67%

Scope: All practical intended learning outcomes of the module

Completion: To pass this module, the examination of each module component has to be passed with at least
45%.

39

7.8 Core Algorithms and Data Structures

Module Name

Core Algorithms and Data Structures

Module Code

SDT-102

Level (type)

Year 1 (CHOICE)

CP

7.5

Module Components

Number Name Type CP

SDT-102-A Core Algorithms and Data Structures Lecture 5

SDT-102-B Core Algorithms and Data Structures - Lab Lab 2.5

Module
Coordinator

Dr. Kinga
Lipskoch

Program Affiliation

● Software, Data and Technology (SDT)

Mandatory Status

Mandatory for SDT and
Minor in Software
Development

Mandatory elective for ECE,
MMDA, and PHDS

Entry
Requirements

Pre-requisites

☒ Programming
in C/C++

Co-requisites

☒ none

Knowledge, Abilities, or
Skills

Frequency

Annually

(Spring)

Forms of Learning and
Teaching

• Lecture (35 hours)
• Tutorial (17.5 hours)
• Independent study (115

hours)
• Exam preparation (20

hours)
Duration

1 semester

Workload

187.5 hours

Recommendations for Preparation

Students should refresh their knowledge of the C, C++ and Python programming language and be able to solve simple
programming problems in C, C++ and Python. Students are expected to have a working programming environment.

Content and Educational Aims

Algorithms and data structures are the foundation of computer science and are crucial for the design and implementation
of efficient software programs. In this module, students will learn about fundamental algorithms for solving problems and
about data structures for storing, accessing, and modifying data in an efficient manner. They will also learn techniques for
analyzing the computational and memory complexities of algorithms and data structures. These concepts and techniques
form the basis for almost all computer programs and are essential for success in the fields of software, data and
technology.

Content:

● Introduction (asymptotic analysis of algorithms, analysis of recurrence relations, sums and integrals, time
complexity, non-asymptotic optimizations, cache)

● Basic data structures (array, list, stack, queue, vector, hash tables, binary heap, heapsort, etc.)
● Sorting algorithms and heaps (quadratic sorting, stable sorting, mergesort, etc.)
● Graphs: depth-first search (DFS) and breadth-first search (BFS) algorithms.
● Graphs: matchings, colorings, flows, cuts.
● Graphs: shortest paths
● Introduction to Complexity Theory, Probabilistic Algorithms

40

● Numerical and Algebraic Algorithms

Intended Learning Outcomes

Upon completion of this module, students will be able to

1. Analyze the time and space complexity of algorithms and optimize them using asymptotic analysis and non-
asymptotic techniques such as cache optimization.

2. Implement and evaluate various data structures including arrays, lists, stacks, queues, vectors, hash tables,
binary heaps, and heapsort.

3. Compare and contrast different sorting algorithms, including quadratic sorting, stable sorting, and mergesort,
and understand the trade-offs involved in their use.

4. Implement depth-first search (DFS) and breadth-first search (BFS) algorithms and understand their applications
in graph theory.

5. Analyze matchings, colorings, flows, and cuts in graphs, and understand the algorithms and mathematical
foundations used to solve these problems.

6. Implement shortest path algorithms in graphs and understand their applications in network design and routing.
7. Understand the fundamental concepts of complexity theory and probabilistic algorithms, and apply them in

solving computational problems.
8. Analyze and implement numerical and algebraic algorithms and understand their applications in a variety of

fields.
9. Develop the ability to analyze, design, and implement algorithms for solving real-world problems and

understand the trade-offs involved in their use.
Indicative Literature

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein: Introduction to Algorithms, 3rd edition, MIT
Press, 2009.

Robert Sedgewick and Kevin Wayne: Algorithms, 4th edition, Addison-Wesley, 2011.

Steven Skiena: The Algorithm Design Manual, 2nd edition, Springer, 2008.

Michael T. Goodrich, Roberto Tamassia, and Michael H. Goldwasser: Data Structures and Algorithms in Python, John Wiley
& Sons, 2013.

Jon Kleinberg and Éva Tardos: Algorithm Design, 1st edition, Pearson, 2005.

David E. Goldberg: Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, 1989.

Donald E. Knuth: The Art of Computer Programming: Fundamental Algorithms, volume 1, 3rd edition, Addison Wesley
Longman Publishing, 1997.

Usability and Relationship to other Modules

● This module will provide students with a solid foundation for understanding how to design and analyze
algorithms for solving problems, as well as data structures for efficiently storing and manipulating data.

Examination Type: Module Component Examination

Component 1: Lecture
Assessment: Written examination Duration: 120 min
 Weight: 67%
Scope: All theoretical intended learning outcomes of the module

Component 2: Lab

Assessment: Program Code Weight: 33%

Scope: All practical intended learning outcomes of the module

Completion: To pass this module, the examination of each module component has to be passed with at least 45%

41

7.9 Operating Systems

Module Name Module Code Level (type) CP
Operating Systems CO-562 Year 2 (CORE) 7.5

Module Components

Number Name Type CP

CO-562-A Operating Systems Lecture 7.5

Module
Coordinator

Prof. Dr. Jürgen
Schönwälder

Program Affiliation

• Computer Science (CS)

Mandatory Status

Mandatory for CS and SDT

Entry
Requirements

Pre-requisites

☒
Algorithms and
Data Structures
or Core
Algorithms and
Data Structures

Co-requisites

☒ None

Knowledge, Abilities, or
Skills
Students are expected to
understand data
representation and
program execution at the
machine instruction level
as covered in the module
Introduction to Computer
Science.

Frequency

Annually
(Fall)

Forms of Learning and
Teaching

• Class attendance (52.5

hours)
• Independent study (115

hours)
• Exam preparation (20

hours)

Duration

1 semester

Workload

187.5 hours

Recommendations for Preparation

Students are expected to have a working Linux installation, which allows them to compile and run sample programs
provided by the instructor and to implement their own solutions for homework assignments.

Content and Educational Aims

This module introduces concepts and principles used by operating systems to provide programming abstractions that
enable an efficient and robust execution of application programs. Students will gain an understanding of how an operating
system kernel manages hardware components and how it provides abstractions such as processes, threads, virtual
memory, file systems, and inter-process communication facilities. Students learn the principles of event-driven and
concurrent programming and the mechanisms that are necessary to solve synchronization and coordination problems,
thereby avoiding race conditions, deadlocks, and resource starvation. The Linux kernel and runtime system will be used
throughout the course to illustrate how key ideas and concepts have been implemented and how application programs
can use them.

Intended Learning Outcomes

By the end of this module, students will be able to

1. explain the differences between processes, threads, application programs, libraries, and operating system
kernels;

2. describe well-known mutual exclusion and coordination problems;
3. use semaphores to achieve mutual exclusion and solve coordination problems;
4. use mutual exclusion locks and condition variables to solve synchronization and coordination problems;
5. illustrate how deadlocks can be avoided, detected, and resolved;
6. summarize the different mechanisms to realize virtual memory and their trade-offs;
7. solve basic inter-process communication problems using signals and pipes;

42

8. use socket inter-process communication primitives;
9. multiplex I/O activities using suitable system calls and libraries;
10. describe file system programming interfaces and the design of file systems at the operating system kernel

level;
11. explain how memory mapping can improve I/O performance;
12. restate the functionality of a linker and the difference between static linking and dynamic linking;
13. outline how different device types are supported by Unix-like kernels;
14. discuss virtualization mechanisms such as containers or virtual machines.

Indicative Literature

Abraham Silberschatz, Peter B. Galvin, Greg Gagne: Applied Operating System Concepts, John Wiley, 2000.

Andrew S. Tanenbaum, Herbert Bos: Modern Operating Systems, Prentice Hall, 4th edition, Pearson, 2015.

William Stallings: Operating Systems: Internals and Design Principles, 8th edition, Pearson, 2014.

Robert Love: Linux Kernel Development, 3rd edition, Addison Wesley, 2010.

Robert Love: Linux System Programming: Talking Directly to the Kernel and C Library, 2nd edition, O'Reilly, 2013.

Usability and Relationship to other Modules

• This module enables students to write programs that make efficient use of the services provided by the
operating system kernel. This is particularly important for advanced modules on computer networks, robotics,
and embedded systems.

Examination Type: Module Examination

Assessment Type: Written examination Duration: 120 min
 Weight: 100%
Scope: All intended learning outcomes of the module

Module achievement: 50% of the assignments correctly solved

This module includes hands-on assignments so that students can develop their system programming skills. The module
achievement ensures that a sufficient level of practical system programming skills has been obtained.

Completion: To pass this module, the examinations must be passed with at least 45%.

43

7.10 Functional Programming

Module Name
Functional Programming

Module Code

SDT-202

Level (type)
Year 2 (CORE)

CP
5

Module Components

Number Name Type CP

SDT-202-A Functional Programming Lecture 2.5

SDT-202-B Functional Programming Tutorial Tutorial 2.5

Module Coordinator

Prof. Dr. Aleksander
Omelchenko

Program Affiliation

● Software, Data and Technology (SDT)

Mandatory Status

Mandatory for Minor
Software Development
Mandatory elective for
SDT

Entry Requirements

Pre-requisites

☒ Core Algorithms and
Data Structures or
Algorithms and Data
structures

Co-requisites

☒ none

Knowledge, Abilities, or
Skills

Frequency

Annually
(Fall)

Forms of Learning and
Teaching
● Lecture attendance

(17.5 hours)
● Tutorial attendance

(17.5 hours)
● Independent study

(70 hours)
● Exam preparation

(20 hours)

Duration

1 semester

Workload

125 hours

Recommendations for Preparation

It is recommended that students install a Linux system such as Ubuntu on their notebooks and that they become
familiar with basic tools such as editors (vim or emacs) and the basics of a shell. The Glasgow Haskell Compiler (GHC) will
be used for implementing Haskell programs.

Content and Educational Aims

The goal of this discipline is to provide students with a solid foundation in functional programming principles and
techniques, focusing on the theoretical knowledge and practical skills required to effectively work with functional
languages. The module explores the core concepts, language structures, syntax, and semantic constructs of functional
programming languages, emphasizing their applicability in modern software development
.

Content:

• Fundamentals of functional programming: lambda calculus and combinatory logic.
• Haskell programming language: syntax, semantics, standard library.
• Manage effects using applicative functors and monads.
• Type systems of functional languages.

44

Intended Learning Outcomes

Upon completion of this module, students will be able to

1. Collaborate effectively within a team in the IT field, utilizing project management tools,
communication skills, and software for team project activities to jointly develop projects.

2. Compare and contrast the advantages and disadvantages of the functional programming paradigm,
and apply functional programming techniques to solve applied problems using languages such as
Haskell.

3. Understand and utilize the basic type systems of functional languages and their extensions with
polymorphic and recursive types to create efficient, well-structured code in a functional programming
context.

4. Choose between lazy and eager evaluation strategies based on the specific requirements of a problem
or application, and implement software solutions using a functional programming paradigm.

5. Explain the computational model underlying functional programming and implement algorithms in
functional languages using key concepts such as immutable data structures, recursion, and pattern
matching.

6. Employ generic annotations and type classes to describe interfaces and ensure static control,
promoting code reusability and maintainability in functional programming projects.

Indicative Literature

• Miran Lipovača. Learn You a Haskell for Great Good.
• O'Sullivan, Bryan, John Goerzen, and Don Stewart. Real World Haskell. O'Reilly Media, Inc., 2008
• Hughes, John. "Why functional programming matters." The computer journal 32.2 (1989): 98-107.

Usability and Relationship to other Modules

• Familiarity with functional programming concepts and principles is increasingly important in fields such as
data science, artificial intelligence, and software development. This module provides a solid foundation in
functional programming techniques and languages, which are essential for advanced modules in computer
science and data science. Additionally, this module introduces advanced concepts of functional programming
that are needed in advanced programming-oriented modules in the 2nd and 3rd years of the SDT program.

Examination Type: Module Component Examination

Component 1: Lecture

Assessment: Written examination Duration: 60 min
 Weight: 50%
Scope: All theoretical intended learning outcomes of the module

Component 2: Tutorial

Assessment: Program Code Weight: 50%

Scope: All practical intended learning outcomes of the module

Completion: To pass this module, the examination of each module component has to be passed with at least
45%.

45

7.11 Scientific Data Analysis

Module Name
Scientific Data Analysis

Module Code
CO-489

Level (type)
Year 2 (CORE)

CP
5

Module Components

Number Name Type CP

CO-489-A Scientific Data Analysis Lecture 5

Module
Coordinator

Prof. Dr. Veit
Wagner

Program Affiliation

• Physics and Data Science (PHDS)

Mandatory Status

Mandatory for MMDA and
PHDS and minor Software
Development
Mandatory elective for SDT

Entry
Requirements

Pre-requisites

☒ Scientific
Programming
with Python

Co-requisites

☒ none

Knowledge, Abilities, or
Skills
Mathematics at the level
of the Mathematical
Modelling module
Basic programming skills in
Python

Frequency

Annually
(Fall)

Forms of Learning and
Teaching

• Lecture (35 hours)
• Homework

exercises (55 hours)
• Private study (35

hours)

Duration

1 semester

Workload

125 hours

Recommendations for Preparation

Review mathematics/linear algebra/statistics and programming at the level of the first-year modules.
Content and Educational Aims

Interpretation of scientific data is at the core of knowledge creation in any science. Proper tools and analysis techniques
are the foundation for new theory validation against experimental findings, parameter extraction from computational or
experimental data, and to discover data relationships in given data sets. This holds for all fields of physics, for the natural
sciences in general and for fields beyond. This module provides a calculus-based introduction to analytical techniques
applied to scientific data sets. Topics include probability distributions, linear and non-linear least square estimation,
Bayesian statistics, Fourier analysis, (time) sequence Analysis including power spectra and convolution, principal
component analysis, data visualization techniques, as well as error and outlier analysis. Exemplary datasets from
experimental and computational sources are used throughout the course. The module introduces their proper handling
and data organization in databases. The module is part of the core physics and data science as well as the core
mathematics, modeling and data analytics education. It builds on the foundation of the programming lab, the data
handling in first year lab courses and first year mathematics foundations. Essential practical experience in applying the
various analysis techniques and their visualization will be supported by homework exercises in close coordination with
the lectures. The aim of the module is to enable students to properly handle, store, analyze and visualize larger
multidimensional scientific datasets by various methods and from various fields, and to prepare students for the data
handling in their BSc thesis research. At the same time, students’ programming and mathematical repertoires as well as
their problem-solving skills are developed. The module also serves as a foundation for specialization subject modules.

Intended Learning Outcomes

Upon completion of this module, students will be able to

1. perform curve and model fitting
2. conduct advanced data Analysis including Fourier analysis and Bayesian statistics
3. understand error handling in multidimensional complex data analysis
4. store, import, handle and visualize large data sets

1

1

46

Indicative Literature

Graham Currell: Scientific Data Analysis, Oxford University Press, 2015.

Edward L. Robinson: Data Analysis for Scientists and Engineers, Princeton University Press, 2016.

Usability and Relationship to other Modules

Examination Type: Module Examination

Assessment Type: Portfolio Assessment (assignments, quizzes) Weight: 100%

Scope: All intended learning outcomes of the module

Completion: To pass this module, the examination has to be passed with at least 45%.

47

7.12 Advanced Algorithms and Data Structures

Module Name

Advanced Algorithms and Data Structures

Module Code

SDT-201

Level (type)

Year 2 (CORE)

CP

5

Module Components

Number Name Type CP

SDT-201-A Advanced Algorithms and Data Structures Lecture 2.5

SDT-201-B Advanced Algorithms and Data Structures Tutorial Tutorial 2.5

Module
Coordinator

Dr. Kinga
Lipskoch

Program Affiliation

● Software, Data and Technology (SDT)

Mandatory Status

Mandatory for SDT

Entry
Requirements

Pre-requisites

☒ Core
Algorithms and
Data Structures
or Algorithms
and Data
Structures

Co-requisites

☒ none

Knowledge, Abilities, or
Skills

Frequency

Annually

(Fall)

Forms of Learning and
Teaching

● Lecture attendance (17.5
hours)

● Tutorial attendance
(17.5 hours)

● Independent study (70
hours)

● Exam preparation (20
hours)

Duration

1 semester

Workload

125 hours

Recommendations for Preparation

Students should refresh their knowledge of the C++ and Python programming language and be able to solve simple
programming problems in C++ and Python. Students are expected to have a working programming environment. Also they
should refresh their knowledge of the basics of algorithms and data structures.

Content and Educational Aims

This module builds on the concepts and techniques covered in "Core Algorithms and Data Structures" and provides
students with a deeper understanding of these important topics. The module will focus on more advanced algorithms and
data structures that are commonly used in practice, and will provide students with a solid foundation for more advanced
coursework in the program and for professional development in the field of software, data and technology.

Content:

● Advanced data structures such as B-trees, AVL trees, and hash tables
● Advanced algorithms for sorting, searching, and graph manipulation
● Techniques for parallel and distributed algorithms
● Algorithms for network flow and linear programming
● Algorithms for approximation and randomization
● Advanced algorithms for specific areas such as computational geometry, cryptography, and machine learning
● Techniques for analyzing the performance of algorithms and data structures and making trade-offs between

time and space complexity

48

Intended Learning Outcomes

Upon completion of this module, students will be able to

1. design, implement and analyze advanced algorithms and data structures for various problems.
2. understand the trade-offs between time and space complexity and make appropriate decisions when choosing

algorithms and data structures.
3. apply advanced algorithms and data structures to solve problems in different areas of computer science such

as distributed systems, databases, and machine learning.
4. understand and use parallel and distributed algorithms.
5. understand the concepts of computational complexity theory and use them to analyze the performance of

algorithms and data structures.
6. understand the properties and use of specific algorithms and data structures used in different areas of

computer science.
7. apply mathematical concepts and formalize algorithms to solve practical problems.

Indicative Literature

• Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein: Introduction to Algorithms, 3rd
edition, MIT Press, 2009.

• Robert Sedgewick and Kevin Wayne: Algorithms, 4th edition, Addison-Wesley, 2011.
• Steven Skiena: The Algorithm Design Manual, 2nd edition, Springer, 2008.
• Michael T. Goodrich, Roberto Tamassia, and Michael H. Goldwasser: Data Structures and Algorithms in Python,

John Wiley & Sons, 2013.
• Jon Kleinberg and Éva Tardos: Algorithm Design, 1st edition, Pearson, 2005.
• David E. Goldberg: Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, 1989.

Usability and Relationship to other Modules

● Familiarity with advanced algorithms and data structures is essential for almost all advanced modules in SDT.
This module builds upon the concepts covered in "Core Algorithms and Data Structures" and introduces more
advanced algorithms and data structures that are commonly used in practice. Additionally, the module covers
techniques for designing, implementing and analyzing efficient algorithms and data structures, and provides
students with hands-on experience implementing these concepts in a programming language. This module is
essential for students planning to continue their studies in the 2nd and 3rd years of the SDT program, as well as
for those planning to pursue a career in the field of computer science.

Examination Type: Module Component Examination

Component 1: Lecture

Assessment: Written examination Duration: 60 min
 Weight: 50%
Scope: All theoretical intended learning outcomes of the module

Component 2: Tutorial

Assessment: Program Code Weight: 50%

Scope: All practical intended learning outcomes of the module

Completion: To pass this module, the examination of each module component has to be passed with at least

45%.

49

7.13 Machine Learning

Module Name Module Code Level (type) CP

Machine Learning CO-541 Year 2 (CORE) 5

Module Components

Number Name Type CP

CO-541-A Machine Learning Lecture 5

Module
Coordinator

Prof. Dr. Francesco
Maurelli

Program Affiliation

● Robotics and Intelligent Systems (RIS)

Mandatory Status

Mandatory for RIS, MMDA,
PHDS, SDT and minor in
Software Development

Mandatory elective for CS

Entry
Requirements

Pre-requisites

☒ none

Co-requisites

☒None

Knowledge, Abilities, or Skills

● Knowledge and
command of probability
theory and methods, as
in the module
“Probability and
Random Process (JTMS-
12)

Frequency

Annually

(Spring)

Forms of Learning and Teaching

● Class attendance (35 hours)
● Private study (70 hours)
● Exam preparation (20

hours)

Duration

1 semester

Workload

125 hours

Recommendations for Preparation

None

Content and Educational Aims

Machine learning (ML) concerns algorithms that are fed with (large quantities of) real-world data, and which return a compressed
“model” of the data. An example is the “world model” of a robot; the input data are sensor data streams, from which the robot learns
a model of its environment, which is needed, for instance, for navigation. Another example is a spoken language model; the input
data are speech recordings, from which ML methods build a model of spoken English; this is useful, for instance, in automated speech
recognition systems. There exist many formalisms in which such models can be cast, and an equally large diversity of learning
algorithms. However, there is a relatively small number of fundamental challenges that are common to all of these formalisms and
algorithms. The lectures introduce such fundamental concepts and illustrate them with a choice of elementary model formalisms
(linear classifiers and regressors, radial basis function networks, clustering, online adaptive filters, neural networks, or hidden Markov
models). Furthermore, the lectures also (re-)introduce required mathematical material from probability theory and linear algebra.

Intended Learning Outcomes

By the end of this module, students will be able to

1. understand the notion of probability spaces and random variables;
2. understand basic linear modeling and estimation techniques;
3. understand the fundamental nature of the “curse of dimensionality;”
4. understand the fundamental nature of the bias-variance problem and standard coping strategies;
5. use elementary classification learning methods (linear discrimination, radial basis function networks, multilayer perceptrons);
6. implement an end-to-end learning suite, including feature extraction and objective function optimization with regularization

based on cross-validation.

50

Indicative Literature

T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edition, Springer,
2008.

S. Shalev-Shwartz, Shai Ben-David: Understanding Machine Learning, Cambridge University Press, 2014.

C. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

T.M. Mitchell, Machine Learning, Mc Graw Hill India, 2017.

Usability and Relationship to other Modules

• This module serves as a third Year Specialization module for CS major students.
• This module gives a thorough introduction to the basics of machine learning. It complements the Artificial Intelligence module.

Examination Type: Module Examination

Assessment Type: Written examination Duration: 120 min
 Weight: 100%
Scope: All intended learning outcomes of the module

Completion: To pass this module, the examination has to be passed with at least 45%.

51

7.14 Discrete Mathematics

Module Name Module Code Level (type) CP

Discrete Mathematics CO-501 Year 2 (CORE) 5

Module Components

Number Name Type CP
CO-501-A Discrete Mathematics Lecture 5

Module
Coordinator

Dr. Keivan Mallahi
Karai

Program Affiliation

● Mathematics, Modeling and Data Analytics (MMDA)

Mandatory Status

Mandatory for MMDA

Mandatory elective for CS, RIS
and SDT

Entry
Requirements

Pre-requisites

☒ None

Co-requisites

☒ None

Knowledge, Abilities, or
Skills

Basic university
mathematics: can be
acquired via the Methods
Modules “Calculus and
Elements of Linear
Algebra I + II” or Matrix
Algebra and Advanced
Calculus.

Frequency

Annually
(Spring)

Forms of Learning and
Teaching

● Lectures (35 hours)
● Private Study (90 hours)

Duration

1 semester

Workload

125 hours

Recommendations for Preparation

● Some basic familiarity with linear algebra is useful, but not technically required.
● It is recommended to have taken the Methods module: Calculus and Elements of Linear Algebra I + II

Content and Educational Aims

This module is an introductory lecture in discrete mathematics. The lecture consists of two main components, enumerative
combinatorics and graph theory. The lecture emphasizes connections of discrete mathematics with other areas of
mathematics such as linear algebra and basic probability, and outlines applications to areas of computer science,
cryptography, etc. where employment of ideas from discrete mathematics has proven to be fruitful. The first part of the
lecture—enumerative combinatorics—deals with several classical enumeration problems (Binomial coefficients, Stirling
numbers), counting under group actions and generating function. The second half of the lecture—graph theory—includes a
discussion of basic notions such as chromatic number, planarity, matchings in graphs, Ramsey theory, and expanders, and
their applications.

Intended Learning Outcomes

By the end of the module, students will be able to

1. demonstrate their mastery of basic tools in discrete mathematics.
2. develop the ability to use discrete mathematics concepts (such as graphs) to model problems in computer

science.
3. analyze the definition of basic combinatorial objects such as graphs, permutations, partitions, etc.
4. formulate and design methods and algorithms for solving applied problems based on concepts from discrete

mathematics.

52

Indicative Literature

J.H. van Lint and R.M. Wilson (2001). A Course in Combinatorics, second edition. Cambridge: Cambridge University Press.

B. Bollobas (1998). Modern Graph Theory, Berlin: Springer.

Usability and Relationship to other Modules

• This module is recommended for students pursuing a minor in Mathematics
• This module is a good option as an elective module for students in RIS.

Examination Type: Module Examination

Assessment Type: Written examination Duration: 120 min
 Weight: 100%
Scope: All intended learning outcomes of this module

Completion: To pass this module, the examinations must be passed with at least 45%.

53

7.15 Artificial Intelligence

Module Name Module Code Level (type) CP
Artificial Intelligence CO-547 Year 2 (CORE) 5

Module Components

Number Name

Type CP
CO-547-A Artificial Intelligence Lecture 5

Module
Coordinator

Program Affiliation Mandatory Status

Prof. Dr.
Andreas
Birk

● Robotics and Intelligent Systems (RIS) Mandatory for RIS and
minor in RIS
Mandatory elective for
CS and SDT

Entry
Requirements

 Frequency Forms of Learning and
Teaching

 Annually
Pre-requisites

☒ Algorithms
and Data
Structures or
Core Algorithms
and Data
Structures

Co-requisites

☒ None

Knowledge, Abilities, or
Skills

(Spring) ● Class attendance (35
hours)

● Private study (70 hours)
● Exam preparation (20

hours)

 Duration

1 semester

Workload

125 hours

Recommendations for Preparation

Revise content of the pre-requisite modules.

Content and Educational Aims

Artificial Intelligence (AI) is an important subdiscipline of Computer Science that deals with technologies to automate
the performance of tasks that are usually associated with intelligence. AI methods have a significant application
potential, as there is an increasing interest and need to generate artificial systems that can carry out complex missions
in unstructured environments without permanent human supervision. The module teaches a selection of the most
important methods in AI. In addition to general-purpose techniques and algorithms, it also includes aspects of methods
that are especially targeted for physical systems such as intelligent mobile robots or
autonomous cars.

Intended Learning Outcomes

By the end of this module, students will be able to

1. outline and explain the history, general developments, and application areas of AI;
2. apply the basic concepts and methods of behavior-oriented AI;
3. use concepts and methods of search algorithms for problem-solving;
4. explain the basic concepts of path-planning as an application example for domain-specific search;
5. apply basic path-planning algorithms and to compare their relations to general search algorithms;
6. write and explain concepts of propositional and first-order logic;
7. use logic representations and inference for basic examples of artificial planning systems.

54

Indicative Literature

S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, 2009.

S. M. LaValle, Planning Algorithms. Cambridge University Press, 2006.

J.-C. Latombe, Robot Motion Planning, Springer, 1991.

Usability and Relationship to other Modules

● This module gives an introduction to Artificial Intelligence (AI) excluding the aspects of machine
learning (ML), which are covered in a dedicated module that complements this one.

Examination Type: Module Examination

Assessment Type: Written examination Duration: 120 min
Weight: 100%

Scope: All intended learning outcomes of the module

Completion: To pass this module, the examinations must be passed with at least 45%.

55

7.16 Software Engineering and Design

Module Name

Software Engineering and Design

Module Code

SDT-204

Level (type)

Year 2 (CORE)

CP

7.5

Module Components

Number Name Type CP

SDT-204-A Software Engineering and Design Lecture 2.5

SDT-204-B Software Engineering and Design Project Project 5

Module Coordinator

Prof. Dr. Timofey
Bryksin

Program Affiliation

● Software, Data and Technology (SDT)

Mandatory Status

Mandatory for SDT

Entry Requirements

Pre-requisites

☒ Operating Systems

Co-requisites

☒ none

Knowledge, Abilities, or
Skills

Frequency

Annually

(Spring)

Forms of Learning and
Teaching

● Lecture attendance
(17.5 hours)

● Tutorial attendance
(35 hours)

● Independent study
(52.5 hours)

● Exam preparation
(20 hours)

Duration

1 semester

Workload

125 hours

Recommendations for Preparation

Students should be familiar with basic concepts of software development, such as data types, control structures, and
object-oriented programming.

Content and Educational Aims

Educational Aims:

1. To provide students with a comprehensive understanding of software engineering principles, practices, and
techniques, as well as the software development life cycle.

2. To enable students to analyze and design complex software systems, and to apply appropriate software
development methodologies and tools.

3. To teach students the best practices for software quality assurance, including testing, debugging, and software
maintenance.

4. To foster the development of critical thinking skills, problem-solving skills, and communication skills required
for software engineering and design.

5. To introduce students to the latest trends, technologies, and tools in software engineering and design, and to
prepare them to work effectively in a rapidly evolving field.

6. To encourage students to apply software engineering and design principles to real-world problems and to
develop solutions that meet business and user needs.

7. To prepare students for professional practice in software engineering and design, including the ability to work
collaboratively, to manage software development projects, and to apply ethical principles in the workplace.

8. To promote the development of a lifelong learning mindset, and to encourage students to stay current with
advances in software engineering and design throughout their careers.

56

Content:

1. Introduction to Software Engineering and Design
● Overview of software engineering and design principles and practices
● Software development life cycle and its phases
● Roles and responsibilities of software engineers and designers

2. Software Requirements Analysis and Specification
● Understanding and capturing software requirements
● Techniques for analyzing requirements
● Documentation and communication of requirements
● Requirements validation and verification

3. Software Design Principles and Patterns
● Object-oriented design principles
● Design patterns and their applications
● Modeling techniques and tools
● Design trade-offs and considerations

4. Software Architecture and Design
● Architectural styles and patterns
● Architecture modeling and documentation
● System and component design
● Integration and testing of software components

5. Software Testing and Quality Assurance
● Testing techniques and strategies
● Test planning and execution
● Quality metrics and measures
● Continuous integration and delivery

6. Software Project Management
● Project planning and estimation
● Risk management and mitigation
● Team organization and communication

7. Agile methodologies and practices
● Emerging Technologies and Trends in Software Engineering and Design
● Cloud computing and software-as-a-service (SaaS)
● Mobile and web application development
● Artificial intelligence and machine learning
● Blockchain technology and distributed systems

8. Ethical and Legal Issues in Software Engineering and Design
● Intellectual property and copyright laws
● Privacy and data protection
● Software piracy and licensing
● Ethical considerations in software development and use.

Intended Learning Outcomes

Upon completion of this module, students will be able to

1. understand the software development life cycle and its phases, and be able to apply appropriate software
development methodologies and tools to various stages of the process.

2. apply software design principles and patterns to develop complex software systems that meet business and
user needs.

3. apply appropriate software quality assurance practices, including testing, debugging, and software
maintenance, to ensure the quality of software products.

4. develop critical thinking and problem-solving skills to identify, analyze, and solve software engineering and
design problems.

5. develop effective communication and collaboration skills required for professional practice in software
engineering and design.

6. analyze and evaluate software requirements and specifications, and develop software that meets those
requirements.

57

7. apply appropriate software architecture and design principles and patterns to design and develop software
systems.

8. apply risk management strategies to identify, analyze, and mitigate risks associated with software
development projects.

9. understand the ethical and legal considerations associated with software development, and apply ethical
principles in the workplace.

10. stay current with advances in software engineering and design, and demonstrate a commitment to lifelong
learning in the field.

Indicative Literature

• Ian Sommerville: Software Engineering, 10th edition, Pearson, 2015.
• Roger S. Pressman: Software Engineering: A Practitioner's Approach, 8th edition, McGraw-Hill, 2014.
• Robert Martin: Agile Software Development, Principles, Patterns, and Practices, Pearson, 2002.
• Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides: Design Patterns: Elements of Reusable Object-

Oriented Software, Addison-Wesley, 1994.
• Martin Fowler: Patterns of Enterprise Application Architecture, Addison-Wesley, 2002.
• Grady Booch, James Rumbaugh, Ivar Jacobson: The Unified Modeling Language User Guide, 2nd edition,

Addison-Wesley, 2005.
• Steve McConnell: Code Complete: A Practical Handbook of Software Construction, 2nd edition, Microsoft Press,

2004.
• Kent Beck: Test-Driven Development: By Example, Addison-Wesley, 2002.
• Michael Feathers: Working Effectively with Legacy Code, Prentice Hall, 2004.
• Craig Larman: Agile and Iterative Development: A Manager's Guide, Addison-Wesley, 2004.

Usability and Relationship to other Modules

• The knowledge and skills acquired in this module will be useful for students planning to pursue a career in
software development or data science, or continue their studies in advanced software development or data
science modules. The module will also be beneficial for students planning to pursue a career in other related
fields such as IT management, software testing, or software project management.

Examination Type: Module Component Examination

Component 1: Lecture

Assessment: Written examination Duration: 60 min
 Weight: 33%
Scope: All theoretical intended learning outcomes of the module

Component 2: Project

Assessment: Program Code Weight: 67%

Scope: All practical intended learning outcomes of the module

Completion: To pass this module, the examination of each module component has to be passed with at least 45%.

58

7.17 Database Fundamentals

Module Name
Database Fundamentals

Module Code
SDT-205

Level (type)

Year 2 (CORE)

CP
5

Module Components

Number Name Type CP

SDT-205-A Database Fundamentals Lecture 2.5

SDT-205-B Database Fundamentals Project Project 2.5

Module Coordinator

Prof. Dr. Alexander
Omelchenko

Program Affiliation

● Software, Data and Technology (SDT)

Mandatory Status

Mandatory for Minor in
Software Development
Mandatory elective for
SDT

Entry Requirements

Pre-requisites

☒ Core Algorithms and
Data Structures

Co-requisites

☒ none

Knowledge, Abilities, or
Skills

Frequency

Annually
(Spring)

Forms of Learning and
Teaching

● Lecture attendance

(17.5 hours)
● Tutorial attendance

(17.5 hours)
● Independent study

(70 hours)
● Exam preparation

(20 hours)

Duration

1 semester

Workload

125 hours

Recommendations for Preparation

Working knowledge of basic algorithms and data structures, such as trees, is required as well as familiarity with an
object-oriented programming language such as Kotlin. For the project work, students benefit
from having basic hands-on skills using Linux and, ideally, basic knowledge of a scripting language such as Python (the
official Python documentation is available on https://docs.python.org/).

Content and Educational Aims

Content:
● Introduction to databases and data management
● Database design and modeling
● Relational database management systems (RDBMS)
● SQL for data manipulation and querying
● Database normalization and optimization
● NoSQL databases and data warehousing
● Database security and administration

Educational Aims:

● To provide students with a strong foundation in database design, modeling and management
● To teach students how to use SQL to manipulate and query data in a relational database
● To enable students to design and implement efficient and normalized databases
● To familiarize students with the unique features of NoSQL databases and data warehousing

59

● To prepare students for using databases in various fields such as software development, data science, and
business.

Intended Learning Outcomes

Upon completion of this module, students will be able to

1. design and model databases.
2. use SQL to manipulate and query data in a relational database.
3. implement and optimize databases using normalization techniques.
4. use NoSQL databases and data warehousing.
5. use databases in various fields such as software development, data science, and business.
6. manage and secure databases

Indicative Literature

• Elmasri Navathe: Fundamentals of Database Systems, 7th edition, Addison-Wesley, 2014.
• C. J. Date: An Introduction to Database Systems, 8th edition, Addison-Wesley, 2004.
• Ramez Elmasri, Shamkant B. Navathe: Database Systems: Concepts, Design and Applications, Prentice-Hall,

1999.
• Kyle Simpson: You Don't Know JS: Async & Performance, O'Reilly Media, 2014.
• Martin Kleppmann: Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and

Maintainable Systems, O'Reilly Media, 2017.

Usability and Relationship to other Modules

• Familiarity with databases is essential for students who wish to specialize in software development and data
science. This module will provide a solid foundation in database design, modeling, and management, including
the use of SQL to manipulate and query data. Additionally, this module will introduce advanced concepts of
database management and NoSQL databases, which are needed in advanced programming-oriented modules
in the 3rd year of the SDT program.

Examination Type: Module Component Examination

Component 1: Lecture

Assessment: Written examination Duration: 60 min
 Weight: 50%
Scope: All theoretical intended learning outcomes of the module

Component 2: Project

Assessment: Program Code Weight: 50%

Scope: All practical intended learning outcomes of the module

Completion: To pass this module, the examination of each module component has to be passed with at least
45%.

60

7.18 Deep Learning

Module Name
Deep Learning

Module Code
MCSSE-AI-01

Level (type)
YEAR 1/2

CP
5

Module Components

Number Name Type CP
MCSSE-AI-01 Deep Learning Lecture 5

Module
Coordinator

Prof. Dr.
Alexander
Omelchenko

Program Affiliation

● MSc Computer Science & Software Engineering (CSSE)

Mandatory Status

Mandatory elective for CSSE and
BSc SDT

Entry
Requirements

 Pre-requisites

☒ none

Co-requisites
☒ none

Knowledge, Abilities, or
Skills

• Strong knowledge

and abilities in
mathematics (linear
algebra, calculus).

Frequency

Annually (Fall)

Forms of Learning and Teaching

• Lectures (35 hours)
• Private study (70 hours)
• Exam preparation (20

hours)

Duration

1 Semester

Workload

125 hours

Recommendations for Preparation

This module is recommended for students that have been exposed to core knowledge in machine learning / statistical
learning on undergraduate level. Students without this background knowledge can still join since required core knowledge
is re-introduced. Preparation via auxiliary literature or online courses will facilitate the start into the module.

Content and Educational Aims

In machine learning we aim at extracting meaningful representations, patterns and regularities from high-dimensional data.
In recent years, researchers from various disciplines have developed “deep” hierarchical models, i.e. models that consist of
multiple layers of nonlinear processing. An important property of these models is that they can “learn” by reusing and
combining intermediate concepts, so that these models can be used successfully in a variety of domains, including
information retrieval, natural language processing, and visual object detection. After a brief introduction into core
knowledge related to training, model evaluation and multilayer perceptrons, this module focuses on the exposing students
to deep learning techniques including convolutional and recurrent neural networks, autoencoders, generative adversarial
networks and reinforcement learning. The central aim is hence to enable students to critically assess and apply modern
methods in machine learning.

Intended Learning Outcomes

Upon completion of this module, students will be able to

1. understand core techniques to train neural networks
2. select from modern neural network architectures the most appropriate method (e.g. convolutional and

recurrent neural networks) based on given input data
3. contrast different recent unsupervised learning methods including autoencoders and generative adversarial

networks
4. describe techniques in reinforcement learning.

Indicative Literature

Ian Goodfellow, Yoshua Bengio, Aaron Courville: Deep Learning, MIT Press, 2016.

61

Aurélien Géron: Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow, 2nd Edition, O’Reilly, 2019.

Christopher M. Bishop: Pattern Recognition and Machine Learning, Springer, 2006.

Charu C. Aggarwal: Neural Networks and Deep Learning – A Textbook, Springer, 2018.

Usability and Relationship to other Modules

• While the graduate level modules “Data Analytics” and “Machine Learning” provide an applied introduction to the
field and are therefore recommended for students with a focus on Software Engineering or Cybersecurity, this
module complements the undergraduate module “Machine Learning” or can be used independently as a strong
introduction to the field of Deep Learning.

Examination Type: Module Examination

Assessment: Written Examination Duration: 120 min

Weight: 100%
Scope: All intended learning outcomes of the module.

Completion: To pass this module, the examinations must be passed with at least 45%.

62

7.19 Stochastic Modeling and Financial Mathematics

Module Name
Stochastic Modeling and Financial Mathematics

Module Code
CA-S-MMDA-
803

Level (type)
Year 2 and 3
(Specialization)

CP
5

Module Components

Number Name Type CP
CA-MMDA-803 Stochastic Modeling and Financial Mathematics Lecture 5

Module
Coordinator

Prof. Dr. Sören
Petrat

Program Affiliation

● Mathematics, Modeling, and Data Analytics (MMDA)

Mandatory Status

Mandatory elective for
MMDA, PHDS,RIS and SDT

Entry
Requirements

Pre-requisites

☒ Matrix Algebra
& Advanced
Calculus I & II

Co-requisites

☒ none

Knowledge, Abilities, or
Skills
Good command of
Calculus, Linear Algebra,
and basic probability basic
Python programming

Frequency

Annually
(Spring)

Forms of Learning and
Teaching

- Lectures (35 hours)
- Private Study (90 hours)

Duration

1 semester

Workload

125 hours

Recommendations for Preparation

• Review the content of Matrix Algebra & Advanced Calculus II
• Review Python programming
• Pre-install Anaconda Python on your own laptop and know how to edit and start simple Python programs in a

Python IDE like Spyder (which comes bundled as part of Anaconda Python).

Content and Educational Aims

This module is a first hands-on introduction to stochastic modeling. Examples will mostly come from the area of Financial
Mathematics, so that this module plays a central role in the education of students interested in Quantitative Finance and
Mathematical Economics. The module is taught as an integrated lecture-lab, where short theoretical units are
interspersed with interactive computation and computer experiments.

Topics include a short introduction to the basic notions of financial mathematics, binomial tree models, discrete Brownian
paths, stochastic integrals and ODEs, Ito's Lemma, Monte-Carlo methods, finite differences solutions, the Black-Scholes
equation, and an introduction to time series analysis, parameter estimation, and calibration. Towards the end, the Fokker-
Planck equation, Ornstein-Uhlenbeck processes, and nonlinear Stochastic Partial Differential Equations are discussed, and
connections to applications in physics and other areas of mathematics are made. Students will program and explore all
basic techniques in a numerical programming environment and apply these algorithms to real data whenever possible.

Intended Learning Outcomes

Upon completion of this module, students will be able to

1. apply fundamental concepts of deterministic and stochastic modeling;
2. design, conduct, and interpret controlled in-silico scientific experiments;
3. analyze the basic concepts of financial mathematics and their role in finance;
4. write computer code for basic financial calculations, binomial trees, stochastic differential equations,

stochastic integrals and time series analysis;
5. compare their programs and predictions in the context of real data;
6. demonstrate the usage of a version control system for collaboration and the submission of code and

reports.

63

Indicative Literature

Y.-D. Lyuu (2002). Financial Engineering and Computation - Principles, Mathematics, Algorithms. Cambridge: Cambridge
University Press.

J.C. Hull (2015). Options, Futures and other Derivatives, 9th edition. New York: Pearson.

A. Etheridge (2002). A Course in Financial Calculus. Cambridge: Cambridge University Press.

D.J. Higham (2001). An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations, SIAM Rev.
43(3):525-546.

D.J. Higham (2004). Black-Scholes Option Valuation for Scientific Computing Students, Computing in Science & Engineering
6(6):72-79.

Usability and Relationship to other Modules

• This module is part of the core education in Mathematics, Modeling and Data Analytics.
• It is also valuable for students in Physics and Data Science, Computer Science, Data Engineering, RIS, SDT, and

ECE, either as part of a minor in Mathematics, or as an elective module.

Examination Type: Module Examination

Assessment Type: Portfolio Assessment (programming assessments, project) Weight: 100%

Scope: All intended learning outcomes of this module

Completion: To pass this module, the examination has to be passed with at least 45%.

64

7.20 Optimization Methods

Module Name

Optimization Methods

Module Code

SDT-301

Level (type)

Year 3
(specialization)

CP

5

Module Components

Number Name Type CP

SDT-301-A Optimization Methods Lecture 2.5

SDT-301-B Optimization Methods Tutorial Tutorial 2.5

Module
Coordinator

Prof. Dr.
Aleksander
Omelchenko

Program Affiliation

● Software, Data and Technology (SDT)

Mandatory Status

Mandatory elective for SDT

Entry
Requirements

Pre-requisites

☒ Linear Algebra
or Matrix Algebra
& Advanced
Calculus II

☒ Programming
in Python and
C++ or
Programming in
C/C++

Co-requisites

☒ none

Knowledge, Abilities, or
Skills

Frequency

Annually

(Fall)

Forms of Learning and
Teaching

● Lecture attendance (17.5
hours)

● Tutorial attendance (35
hours)

● Independent study (52.5
hours)

● Exam preparation (20
hours)

Duration

1 semester

Workload

125 hours

Recommendations for Preparation

• Familiarity with basic mathematical concepts such as linear algebra, and calculus.
• Familiarity with basic programming concepts and experience with a programming language such as Python.

Content and Educational Aims

Optimization methods are a set of mathematical techniques used to find the best solution to a problem, given a set of
constraints. In this module, students will learn about different optimization techniques such as linear and non-linear
programming, gradient-based and heuristic methods, and their applications in various fields such as engineering, finance,
and operations research. They will also learn about the implementation of optimization algorithms using programming
languages such as Python. This module serves as an introduction to optimization methods and provides students with a
solid foundation for more advanced coursework in the program and the industry.

Content:

• Linear programming: Formulation of LP problems, simplex method, duality theory, sensitivity analysis, and
applications.

• Non-linear programming: Unconstrained optimization, optimization under constraints, optimization with
inequality constraints, optimization with equality constraints, optimization with nonlinear constraints, and
applications.

65

• Gradient-based optimization methods: Newton and quasi-Newton methods, conjugate gradient and conjugate
direction methods, and optimization of multivariable functions.

• Heuristic optimization methods: Genetic algorithms, simulated annealing, tabu search, and other
metaheuristics.

• Applications of optimization methods: Linear and non-linear programming in engineering, finance, and
operations research.

• Implementation of optimization algorithms using programming languages such as Python.
• Analysis and interpretation of the results of optimization problems.
• Trade-offs and limitations of different optimization methods.
• Communication and presentation of optimization results using mathematical notation and technical language.
• Ethical and societal implications of optimization methods.

Intended Learning Outcomes

Upon completion of this module, students will be able to

1. Understand the concepts and principles of optimization methods, including linear and non-linear programming,
gradient-based and heuristic methods.

2. Apply optimization techniques to solve real-world problems in various fields such as engineering, finance, and
operations research.

3. Understand the trade-offs and limitations of different optimization methods and select the appropriate method
for a given problem.

4. Implement optimization algorithms using programming languages such as Python.
5. Analyze and interpret the results of optimization problems and make recommendations based on the results.
6. Communicate effectively about optimization methods using mathematical notation and technical language.
7. Develop an understanding of the ethical and societal implications of optimization methods.

Indicative Literature

Jorge Nocedal, Stephen J. Wright: Numerical Optimization, 2nd edition, Springer, 2006.

Andreu Mas-Colell, Michael D. Whinston, Jerry R. Green: Microeconomic Theory, Oxford University Press, 1995.

Dimitri P. Bertsekas: Nonlinear Programming, 2nd edition, Athena Scientific, 1999.

John C. Hull: Options, Futures, and Other Derivatives, 9th edition, Prentice Hall, 2014.

David G. Luenberger, Yinyu Ye: Linear and Nonlinear Programming, 3rd edition, Springer, 2008

Usability and Relationship to other Modules

• Optimization methods are widely used in fields such as engineering, finance, operations research and computer
science. This module provides a solid foundation in optimization techniques such as linear and non-linear
programming, gradient-based and heuristic methods, and their applications in various fields. It also covers the
implementation of optimization algorithms using programming languages such as Python, which is essential for
students who wish to pursue advanced coursework in related fields or pursue careers in fields such as
engineering, finance, operations research, and computer science. Understanding optimization methods is also
important for making informed decisions in various fields as well as solving real-world problems.

Examination Type: Module Component Examination

Component 1: Lecture

Assessment: Written examination Duration: 60 min
 Weight: 50%
Scope: All theoretical intended learning outcomes of the module

Component 2: Tutorial

Assessment: Program Code Weight: 50%

Scope: All practical intended learning outcomes of the module

Completion: To pass this module, the examination of each module component has to be passed with at least
45%.

66

7.21 Natural Language Processing

Module Name

Natural Language Processing

Module Code

SDT-305

Level (type)

Year 3
(specialization)

CP

5

Module Components

Number Name Type CP

SDT-305-A Natural Language Processing Lecture 5

Module
Coordinator

Prof. Dr.
Aleksander
Omelchenko

Program Affiliation

● Software, Data and Technology (SDT)

Mandatory Status

Mandatory elective for SDT

Entry
Requirements

Pre-requisites

☒ Linear Algebra
or Matrix Algebra
& Advanced
Calculus II

☒ Programming
in Python and
C++ or
Programming in
C/C++

☒ Machine
Learning

Co-requisites

☒ none

Knowledge, Abilities, or
Skills

☒ Familiarity with basics of
Deep Learning, Python and
Pytorch is recommended.

Frequency

Annually

(Spring)

Forms of Learning and
Teaching

● Lecture attendance (35
hours)

● Independent study (70
hours)

● Exam preparation (20
hours)

Duration

1 semester

Workload

125 hours

Recommendations for Preparation

Familiarity with basic mathematical concepts such as linear algebra, and calculus. Familiarity with basic programming
concepts and experience with a programming language and such as Python.

67

Content and Educational Aims

Students learn the fundamental concepts and techniques of natural language processing (NLP) and how to apply them to
analyze, understand and generate human language. They gain hands-on experience with popular NLP libraries and
frameworks in Python. Students also learn about the key NLP tasks such as tokenization, part-of-speech tagging, syntactic
parsing, named entity recognition, about the key NLP applications such as text classification, sentiment analysis, machine
translation, and text generation, and about the challenges and limitations of NLP and the state-of-the-art research in the
field.

Content:

● Introduction to NLP, including the history and current state of the field
● Key NLP tasks such as tokenization, part-of-speech tagging, syntactic parsing
● Key NLP applications such as text classification, sentiment analysis, machine translation, and text generation
● Techniques for working with large text corpora, such as text pre-processing, data cleaning and data preparation
● Techniques for building NLP systems, such as statistical models, and neural networks
● Techniques for evaluating NLP systems
● State-of-the-art research in NLP
● Hands-on experience with popular NLP libraries and frameworks in Python

Intended Learning Outcomes

Upon completion of this module, students will be able to

1. understand and apply fundamental concepts and techniques of natural language processing (NLP) to analyze,
understand, and generate human language.

2. identify and perform the key NLP tasks such as tokenization, part-of-speech tagging, syntactic parsing, semantic
role labeling, named entity recognition, and coreference resolution.

3. identify and apply the key NLP applications such as text classification, sentiment analysis, machine translation,
and text generation.

4. evaluate NLP systems and understand the challenges and limitations of NLP.
5. understand the state-of-the-art research in NLP, learn how to read and reproduce modern NLP research papers
6. use popular NLP libraries and frameworks in Python to implement NLP tasks and applications.

Indicative Literature

Jacob Eisenstein: Natural Language Processing, 1st edition, Cambridge University Press, 2020.

James H. Martin: Natural Language Processing with GATE, 1st edition, Cambridge University Press, 2016.

Dan Jurafsky and James H. Martin: Speech and Language Processing, 3rd edition, Prentice Hall, 2020.

Yoav Goldberg: Neural Network Methods for Natural Language Processing, 1st edition, Morgan & Claypool Publishers,
2017.

Usability and Relationship to other Modules

• This module will provide students with a solid understanding of the fundamental concepts and techniques of
natural language processing, as well as hands-on experience with popular NLP libraries and frameworks in Python.
The module will prepare students for more advanced coursework in the program and for professional
development in the field of software, data and technology, particularly in areas such as text mining, information
retrieval, and language-based AI.

Examination Type: Module Examination

Assessment: Written examination Duration: 120 min
 Weight: 100%
Scope: All theoretical intended learning outcomes of the module

Completion: To pass this module, the examination has to be passed with at least 45%.

68

7.22 Distributed Algorithms

Module Name Module Code Level (type) CP
Distributed Algorithms CA-S-CS-803 Year 3

(Specialization)
5

Module Components

Number Name

Type CP

CA-CS-803 Distributed Algorithms Lecture 5

Module
Coordinator

Program Affiliation Mandatory Status

Dr. Kinga
Lipskoch

● Computer Science (CS) Mandatory elective for CS,
RIS and SDT

Entry
Requirements

 Frequency Forms of Learning and
Teaching

Pre-requisites

☒
Algorithms
and Data
Structures
or Core
Algorithms
and Data
Structures

Co-requisites

☒ None

Knowledge, Abilities,
or Skills

Annually
(Fall or Spring)

● Class attendance

(35 hours)
● Private study

(70 hours)
● Exam preparation (20

hours)

 Duration

1 semester

Workload

125 hours

Recommendations for Preparation

None

Content and Educational Aims

Distributed algorithms are the foundation of modern distributed computing systems. They are characterized by a lack
of knowledge of a global state, a lack of knowledge of a global time, and inherent non-determinism in their execution.
The module introduces basic distributed algorithms using an abstract formal model, which is centered on the notion of
a transition system. The topics covered are logical clocks, distributed snapshots, mutual exclusion algorithms, wave
algorithms, election algorithms, reliable broadcast algorithms, and distributed consensus algorithms. Process algebras
are introduced as another formalism to describe distributed and concurrent systems.

The distributed algorithms introduced in this module form the foundation of computing systems that have to be
scalable and fault-tolerant, e.g., large-scale distributed non-standard databases or distributed file systems. The module
is recommended for students interested in the design of scalable distributed computing systems.

69

Intended Learning Outcomes

By the end of this module, students will be able to

1. describe and analyze distributed algorithms using formal methods such as transition systems;
2. explain different algorithms to solve election problems;
3. illustrate the limitations of time to order events and how logical clocks and vector clocks overcome these

limitations;
4. apply distributed algorithms to produce consistent snapshots of distributed computations;
5. describe the differences among wave algorithms for different topologies;
6. analyze and implement distributed consensus algorithms such as Paxos and Raft;
7. use a process algebra such as communicating sequential processes or -calculus to model

distributed algorithms.

Indicative Literature
Maarten van Steen, Andrew S. Tanenbaum: Distributed Systems, 3rd edition, Pearson Education, 2017. Nancy A.

Lynch: Distributed Algorithms, Morgan Kaufmann, 1996.

Usability and Relationship to other Modules

.

Examination Type: Module Examination

Assessment Type: Written examination Duration: 120 min
Weight: 100%

Scope: All intended learning outcomes of the module

Completion: To pass this module, the examination has to be passed with at least 45%

70

7.23 Computer Networks

Module Name Module Code Level (type) CP
Computer Networks CO-564 Year 3 (CORE) 5

Module Components

Number Name Type CP

CO-564-A Computer Networks Lecture 5

Module
Coordinator

Prof. Dr. Jürgen
Schönwälder

Program Affiliation

• Computer Science (CS)

Mandatory Status

Mandatory for CS
Mandatory elective for SDT

Entry
Requirements

Pre-requisites

☒
Algorithms and
Data Structures
or Core
Algorithms and
Data Structures

Co-requisites

☒
Operating
Systems

Knowledge, Abilities, or
Skills

Frequency

Annually
(Fall)

Forms of Learning and
Teaching

• Class attendance (35

hours)
• Private study (70 hours)
• Exam preparation (20

hours)

Duration

1 semester

Workload

125 hours

Recommendations for Preparation

Students are expected to be familiar with the C programming language and to learn basics of higher-level scripting
languages such as Python (the official Python documentation is available on https://www.youtube.com/watch

Content and Educational Aims

Computer networks such as the Internet play a critical role in today's connected world. This module discusses the
technology of Internet services in depth to enable students to understand the core issues involved in the design of modern
computer networks. Fundamental algorithms and principles are explained in the context of existing protocols as they are
used in today's Internet. Students taking this module should finally understand the technical complexity behind everyday
online services such as Google or YouTube.

Students taking this module will understand how computer networks work and they will be able to assess communication
networks, including aspects such as performance but also robustness and security. Students will learn that the design of
communication networks is not only influenced by technical constraints but also by the necessity to define common
standards, which often requires to take engineering decisions that reflect non-technical requirements.

Intended Learning Outcomes

By the end of this module, students will be able to

1. recall layering principles and the OSI reference model;
2. articulate the organization of the Internet and the organization involved in providing Internet services;
3. describe media access control, flow control, and congestion control mechanisms;
4. explain how local area networks differ from global networks;
5. illustrate how frames are forwarded in local area networks;
6. contrast addressing mechanisms and translations between addresses used at different layers;
7. demonstrate how the Internet network layer forwards packets;
8. present how routing algorithms and protocols are used to determine and select routes;

https://www.youtube.com/watch

71

9. describe how the Internet transport layer provides different end-to-end services;
10. demonstrate how names are resolved to addresses and vice versa;
11. summarize how application layer protocols send and access electronic mail or access resources on the

world-wide web;
12. design and implement simple application layer protocols;
13. recognize to which extent computer networks are fragile and evaluate strategies to cope with the

fragility;
14. analyze traffic traces produced by a given computer network.

Indicative Literature

James F. Kurose, Keith W. Ross: Computer Networking: A Top-Down Approach Featuring the Internet, 3rd Edition,
Addison-Wesley, 2004.

Andrew S. Tanenbaum: Computer Networks, 4th Edition, Prentice Hall, 2002.

Usability and Relationship to other Modules

• The module should be taken together with the module Operating Systems, because a significant portion of the
communication technology is implemented at the operating system level. An understanding of operating system
concepts and abstractions will help students to understand how computer network technology is commonly
implemented and made available to applications. The specialization module Distributed Algorithms discusses
algorithms for solving problems commonly found in distributed systems that use computer networks to
exchange information. The module Secure and Dependable Systems introduces cryptographic mechanisms that
can be used to secure communication over computer networks.

Examination Type: Module Examination

Assessment Type: Written examination Duration: 120 min
 Weight: 100%
Scope: All intended learning outcomes of the module

Completion: To pass this module, the examination has to be passed with at least 45%.

72

7.24 Databases Internals

Module Name
Databases Internals

Module Code
SDT-302

Level (type)
Year 3
(Specialization)

CP
5

Module Components

Number Name Type CP

SDT-302-A Databases Internals Lectures 5

Module Coordinator

Prof. Dr. Aleksander
Omelchenko

Program Affiliation

● Software, Data and Technology (SDT)

Mandatory Status

Mandatory elective for
SDT

Entry Requirements

Pre-requisites

☒ Databases

☒ Development in JVM
Languages

Co-requisites

☒ none

Knowledge, Abilities, or
Skills

Frequency

Annually
(Fall)

Forms of Learning and
Teaching
● Lecture attendance

(17.5 hours)
● Team work (35

hours)
● Independent study

(52.5 hours)
● Exam preparation

(20 hours)

Duration

1 semester

Workload

125 hours

Recommendations for Preparation

• Familiarity with basic concepts of database management systems (DBMS) and SQL.
• Familiarity with basic concepts of data structures and algorithms.
• Familiarity with basic programming concepts and experience with a programming language such as Kotlin

Content and Educational Aims

This discipline is aimed at gaining skills in building data storage systems and operating with them in an effective way.
During the course, students will get familiar hor a relational database engine works internally. They will look at the data
structures, algorithms and mathematics, which allow for efficient execution of complex search queries in pretty big
databases, and will try to implement a few components of a toy database.

Content:

• Principles of building relational DBMS
• Some issues of building distributed DBMS
• Columnar DBMS
• Non-classical DBMS types: XML, graph, object
• Elements of multidimensional indexing
• The task of configuring DBMS

Intended Learning Outcomes

Upon completion of this module, students will be able to:

1. describe the principles of storing and accessing data records on disk, performing relational operations such as
selections and joins, building and using indexes appropriately;

2. apply cost-based optimization techniques to the problems of choosing the optimal way of query execution
3. implement lock-based and timestamp-ordering based schedulers in transactional systems

73

Indicative Literature

Thomas Connolly, Carolyn Begg: Database Systems: A Practical Approach to Design, Implementation and Management,
6th edition, Addison-Wesley, 2016.
C. J. Date: An Introduction to Database Systems, 8th edition, Addison-Wesley, 2004.
Hector Garcia-Molina, Jeffrey D. Ullman, Jennifer Widom: Database Systems: The Complete Book, 2nd edition, Prentice
Hall, 2002.
Ramez Elmasri, Shamkant B. Navathe: Fundamentals of Database Systems, 7th edition, Pearson, 2018.
Michael Stonebraker, Joseph M. Hellerstein, James Hamilton: Readings in Database Systems, 5th edition, Morgan
Kaufmann Publishers, 2018

Usability and Relationship to other Modules

• An understanding of the internal workings of databases is essential for students pursuing careers in computer
science, software engineering, and related fields. This module provides a solid foundation in the internal workings
of database management systems, including storage structures, query processing, and transaction management. It
also covers the implementation of databases using programming languages such as SQL. This knowledge is crucial
for students who wish to pursue advanced coursework in computer science and related fields, as well as for those
who wish to pursue careers in fields such as software development, data management and data administration.

Examination Type: Module Examination

Assessment: Written examination Duration: 120 min
 Weight: 100%
Scope: All theoretical intended learning outcomes of the module

Completion: To pass this module, the examination has to be passed with at least 45%

74

7.25 Integrated Development and IT Operations

Module Name
Integrated Development and IT Operations

Module Code
SDT-306

Level (type)
Year 3
(Specialization)

CP
5.0

Module Components

Number Name Type CP

SDT-306-A Integrated Development and IT Operations Lectures 5

Module Coordinator

Prof. Dr. Aleksander
Omelchenko

Program Affiliation

● Software, Data and Technology (SDT)

Mandatory Status

Mandatory elective
for SDT

Entry Requirements

Pre-requisites

☒ Operating Systems

☒ Software Engineering

Co-requisites

☒ none

Knowledge, Abilities, or
Skills

Any programming
language knowledge,
basic knowledge in
networks

Frequency

Annually
(Spring)

Forms of Learning and
Teaching
● Lecture attendance

(35 hours)
● Independent study

(70 hours)
● Exam preparation

(20 hours)

Duration

1 semester

Workload

125 hours

Recommendations for Preparation

Students should be familiar with basic concepts of software development, including version control, testing, and
deployment, with basic Linux command line usage and basic administration tasks.

Content and Educational Aims

This module provides an introduction to the principles, practices, and tools of DevOps, a set of methodologies that aim to
improve the collaboration, communication and integration between software development and IT operations teams. In
this module, students will learn about the key concepts and practices of DevOps, including continuous integration,
continuous delivery, and infrastructure as code. They will also learn about the tools and technologies used in DevOps,
such as version control systems, containerization, and cloud computing. This module will give students a solid
understanding of the principles and practices of DevOps and how they can be applied to improve the software
development process and increase efficiency.

Content:

● Key concepts of DevOps, such as continuous integration, continuous delivery, and infrastructure as code
● Collaboration, communication and integration between software development and IT operations teams
● Version control systems and their role in DevOps
● Containerization and its usage in DevOps
● Cloud computing and its role in DevOps
● Automation and monitoring in DevOps
● Security considerations in DevOps
● Best practices and real-world examples of DevOps in action.

75

Intended Learning Outcomes

Upon completion of this module, students will be able to:

1. understand the key principles and practices of DevOps and how they can be applied to software development
projects

2. use version control systems such as Git to manage and track changes to code
3. set up and configure continuous integration and delivery pipelines using tools like Jenkins
4. use infrastructure as code tools like Docker and Terraform to automate the deployment and management of

applications and infrastructure
5. monitor and log the performance and reliability of applications and systems using tools such as Splunk and

Grafana
6. collaborate effectively with development and operations teams to improve the efficiency and reliability of

software delivery.

Indicative Literature

• Jez Humble, David Farley: Continuous Delivery: Reliable Software Releases through Build, Test, and
Deployment Automation, Addison-Wesley, 2010.

• Gene Kim, Kevin Behr, George Spafford: The Phoenix Project: A Novel About IT, DevOps, and Helping Your
Business Win, IT Revolution, 2013.

• Patrick Debois: The DevOps Handbook: How to Create World-Class Agility, Reliability, and Security in
Technology Organizations, IT Revolution Press, 2016.

• Michael Nygard: Release It!: Design and Deploy Production-Ready Software, Pragmatic Bookshelf, 2007.
• Kim, Gene, and John Willis. The DevOps Adoption Playbook: A Guide to Adopting DevOps in a Multi-Speed IT

Enterprise. IT Revolution Press, 2018.

Usability and Relationship to other Modules

• DevOps is a rapidly growing field that combines software development and IT operations to improve the
software development process and increase efficiency. This module provides a solid foundation in the principles,
practices, and tools of DevOps, including continuous integration, continuous delivery, and infrastructure as
code. It also covers the tools and technologies used in DevOps, such as version control systems, containerization,
and cloud computing. This knowledge is crucial for students who wish to pursue careers in software
development, IT operations, and related fields. It will also help students to understand how to improve the
software development process and increase efficiency in their organizations.

Examination Type: Module Examination

Assessment: Written examination Duration: 120 min
 Weight: 100%
Scope: All theoretical intended learning outcomes of the module

Completion: To pass this module, the examination has to be passed with at least 45%

76

7.26 Parallel Programming

Module Name
Parallel Programming

Module Code
SDT-303

Level (type)
Year 3
(Specialization)

CP
5.0

Module Components

Number Name Type CP

SDT-303-A Parallel Programming Lectures 5

Module Coordinator

Prof. Dr. Kirill Krinkin

Program Affiliation

● Software, Data and Technology (SDT)

Mandatory Status

Mandatory elective
for SDT

Entry Requirements

Pre-requisites

☒ Operating Systems

☒ Development in JVM
Languages

Co-requisites

☒ none

Knowledge, Abilities, or
Skills

Strong knowledge of
basic data structures
and algorithms, basic
programming skills in
Kotlin

Frequency

Annually
(Fall)

Forms of Learning and
Teaching
● Lecture attendance

(35 hours)
● Independent study

(70 hours)
● Exam preparation

(20 hours)

Duration

Workload

125 hours

Recommendations for Preparation

• Fundamentals of computer science, including computer architecture, algorithms and data structures, and
programming skills in Java or Kotlin.

Content and Educational Aims

This module introduces the principles and practices of concurrent programming, including the state-of-the-art and
modern approaches to building concurrent algorithms.

Content:

• Key concepts in concurrent programming, such as the shared-memory model, linearizability correctness
property, and the standard progress guarantees

• Lock-based synchronization
• Basic non-blocking concurrent algorithms, such as the Michael-Scott queue
• Modern concurrent algorithms, such as the Fetch-And-Add-based queues
• Various techniques used in concurrent algorithms, such as helping, descriptors, and flat combining

Intended Learning Outcomes

Upon completion of this module, students will:

1. Understand the basic concepts of concurrent programming
2. Able to implement existing concurrent algorithm algorithms
3. Able to develop new concurrent algorithms either using the learned techniques and approaches or even by

introducing new ones
4. Able to reason about the correctness of concurrent algorithms

Indicative Literature

Michael J. Quinn: Parallel Programming in C with MPI and OpenMP, McGraw-Hill, 2003.
Peter Pacheco: An Introduction to Parallel Programming, Morgan Kaufmann Publishers, 2011.
Grama, Ananth, et al. Introduction to parallel computing. Pearson Education India, 2003.

77

William Gropp, Ewing Lusk, Anthony Skjellum: Using MPI: Portable Parallel Programming with the Message-Passing
Interface, 2nd edition, MIT Press, 1999.
Andrew S. Tanenbaum, Martín Casado: Computer Networks, 5th edition, Prentice Hall, 2010.
Herlihy, Maurice, Nir Shavit, Victor Luchangco, and Michael Spear. The art of multiprocessor programming. Newnes,
2020.
Usability and Relationship to other Modules

• Nowadays, concurrent programming is crucial for students pursuing careers in computer science, software
engineering, and related fields. This module provides a solid foundation in the principles and practices of
developing concurrent algorithms.

Examination Type: Module Examination

Assessment: Written examination Duration: 120 min
 Weight: 100%
Scope: All theoretical intended learning outcomes of the module

Completion: To pass this module, the examination has to be passed with at least 45%

78

7.27 Formal Languages and Parsers

Module Name
Formal Languages and Parsers

Module Code
SDT-304

Level (type)
Year 3
(Specialization)

CP
5

Module Components

Number Name Type CP

SDT-304-A Formal Languages and Parsers Lecture 2.5

SDT-304-B Formal Languages and Parsers Tutorial Tutorial 2.5

Module Coordinator

Prof. Dr. Anton
Podkopaev

Program Affiliation

• Software, Data and Technology (SDT)

Mandatory Status

Mandatory elective
for SDT

Entry Requirements

Pre-requisites

☒ Programming in
Python and C++ or
Programming in C/C++

☒ Discrete
Mathematics

Co-requisites

☒ none

Knowledge, Abilities, or
Skills

Frequency

Annually
(Fall)

Forms of Learning and
Teaching
• Lecture attendance

(17.5 hours)
• Tutorial attendance (35

hours)
• Independent study

(52.5 hours)
• Exam preparation (20

hours)

Duration

1 semester

Workload

125 hours

Recommendations for Preparation
Familiarity with basic mathematical concepts such as set theory, logic, and discrete mathematics. Familiarity with basic
programming concepts and experience with a programming language such as Python or Kotlin.
Content and Educational Aims

The aim of this discipline is to give students theoretical knowledge and practical skills in the fundamentals of the theory
of formal languages. Considerable attention is paid to issues related to the theoretical aspects of the syntax and semantics
of programming languages, as well as to the creation of effective algorithms for lexical and syntactic analysis of program
code. During the course, students will: − learn basic methods of parsing; main approaches used for generating object code.
− be able to describe programming language syntax, using various approaches; construct language semantics using
different approaches; apply regular expressions for lexical analysis; create algorithms for efficient syntactic analysis of
program code; develop JIT compilers. − Have gained skills in application of methods for describing the syntax and
semantics of programming languages using various approaches; methods for creating effective algorithms for lexical and
syntactic analysis of program code.

Content:

• Deterministic and nondeterministic finite automata
• Deterministic and nondeterministic pushdown automata
• Turing machines and linear-bounded turing machines
• Recursive descent parsing
• Lexer and parser generators
• LL and LR grammars
• Parser expression grammars
• Combinatory parsing
• Regular languages and expressions
• Context-free languages and grammars
• Context-sensitive, recursively enumerable languages and their useful subsets

79

Intended Learning Outcomes

Upon completion of this module, students will be able to

1. know the basic modern principles and approaches to the construction of formal languages. Have gained skill in
finding relevant information on formal languages and grammars.

2. can design a language with syntax which can be effectively parsed using modern methods. Know the classes of
grammars most useful in practice. Know the theoretical complexity bounds for relevant classes of grammars.

3. know the algorithms for syntactic analysis. Generate a lexer and a parser from the language specification.
Effectively implement recursive descent parsers. Effectively implement parser combinators.

4. know the basic methods of working with finite state machines. Be able to present and justify the choice of
methods of working with a given formal language. Have the skills to describe a given programming language
syntax with regular expressions and context-free grammars.

Indicative Literature

• John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman: Introduction to Automata Theory, Languages, and
Computation, 3rd edition, Addison-Wesley, 2007.

• Michael Sipser: Introduction to the Theory of Computation, 3rd edition, Cengage Learning, 2013.
• Martin Davis, Ron Sigal, Elaine J. Weyuker: Computability, Complexity, and Languages: Fundamentals of

Theoretical Computer Science, 2nd edition, Elsevier, 1994.
• Dexter Kozen: Automata and Computability, Springer, 1997.
• Harry Lewis, Christos Papadimitriou: Elements of the Theory of Computation, 2nd edition, Prentice Hall, 1998

Usability and Relationship to other Modules

• Formal languages and automata form the theoretical foundations of computer science and are essential for
understanding the properties and limits of computation. This module provides a solid foundation in formal
languages and automata theory, including regular languages, context-free languages, Turing machines, and
decidability. It also covers the applications of formal languages and automata theory in various fields such as
compilers, parsing, and verification. This knowledge is crucial for students who wish to pursue advanced
coursework in computer science, theoretical computer science, and related fields, as well as for those who wish
to pursue careers in fields such as software engineering, verification, and natural language processing.

Examination Type: Module Component Examination

Component 1: Lecture

Assessment: Written examination Duration: 60 min
 Weight: 50%
Scope: All theoretical intended learning outcomes of the module

Component 2: Tutorial

Assessment: Program code
 Weight: 50%
Scope: All practical intended learning outcomes of the module

Completion: To pass this module, the examination of each module component has to be passed with at least
45%.

80

7.28 Compilers

Module Name
Compilers

Module Code
SDT-307

Level (type)
Year 3
(Specialization)

CP
5

Module Components

Number Name Type CP

SDT-307-A

Compilers Lecture 2.5

SDT-307-B Compilers Project Project 2.5

Module Coordinator

Prof. Dr. Anton
Podkopaev

Program Affiliation

● Software, Data and Technology (SDT)

Mandatory Status

Mandatory elective
for SDT

Entry Requirements

Pre-requisites

☒ Formal Languages
and Parsers

☒ Functional
Programming

Co-requisites

☒ none

Knowledge, Abilities, or
Skills

Frequency

Annually
(Spring)

Forms of Learning and
Teaching

• Lecture attendance

(17.5 hours)
• Tutorial attendance

(17.5 hours)
• Independent study (50

hours)
• Exam preparation (20

hours)
Duration

1 semester

Workload

125 hours

Recommendations for Preparation

Students should have a solid understanding of at least one programming language and its syntax before taking this
module. They should review basic data structures and algorithms, as well as math skills, formal languages and automata,
functional programming.
Content and Educational Aims

This module provides students with a deep understanding of the principles and techniques used in compilers, including
lexical analysis, syntax analysis, semantic analysis, and code generation, give them hands-on experience with the
implementation of a compiler using a modern compiler construction toolkit, teach students about the important trade-
offs involved in the design and implementation of a compiler, including performance, code size, and maintainability.

Content:

• Introduction to compilers and the compilation process. Programming languages and machine
architectures. Compiler, interpreter.

• Syntax analysis. Stack machine.
• x86 command system. Code generator, control structures, procedures and functions.
• Dynamic data structures and symbolic expressions.
• Program Runtime

Intended Learning Outcomes

Upon completion of this module, students will be able to

1. know the basic algorithms for parsing code. Implements these algorithms. Know how to implement a compiler
stack machine.

81

2. know the basic principles of dynamic data structures. Know the disciplines of dynamic memory management.
3. know the basic principles of compiler structure. Be able to organize and conduct a scientific discussion on issues

from the professional sphere. Know how to discuss a choice of the optimal compiler for solving practical tasks.
4. know basic stages of compiler development. Implement all compiler components.

Indicative Literature

"Compilers: Principles, Techniques, and Tools" by Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman,
commonly known as the "Dragon book" published by Addison-Wesley Professional (1986)

"Modern Compiler Implementation in Java" by Andrew W. Appel, published by Cambridge University Press (1998)

"Principles of Compiler Design" by Alfred V. Aho and Jeffrey D. Ullman, published by Addison-Wesley Professional (1977)

"Engineering a Compiler" by Keith D. Cooper and Linda Torczon, published by Morgan Kaufmann (2012)

"Compiling with Continuations" by Andrew W. Appel, published by Cambridge University Press (1992)

gcc.gnu.org/wiki/ListOfCompilerBooks - a list of books on compiler construction

gcc.gnu.org - compiler GCC;

llvm.org - infrastructure LLVM
Usability and Relationship to other Modules

• This module is suitable for computer science students with a solid understanding of programming and algorithms,
as well as an interest in the inner workings of programming languages and the software development process.
Knowledge of the module may be used to develop and improve the compiler, to write code generators for specific
processors, to design and implement new languages, to improve code optimization, and to design and implement
run-time systems.

Examination Type: Module Component Examination

Component 1: Lecture

Assessment type: Written examination Duration: 60 min
 Weight: 50%
Scope: All theoretical intended learning outcomes of the module

Component 2: Project

Assessment type: Program Code
 Weight: 50%
Scope: All practical intended learning outcomes of the module

Completion: To pass this module, the examination of each module component has to be passed with at least 45%.

82

7.29 Semantics of Programming Languages

Module Name
Semantics of Programming Languages

Module Code
SDT-308

Level (type)
Year 3
(Specialization)

CP
5.0

Module Components

Number Name Type CP

SDT-308-A Semantics of Programming Languages Lectures 2.5

SDT-308-B Semantics of Programming Languages Tutorial Tutorial 2.5

Module Coordinator

Prof. Dr. Anton
Podkopaev

Program Affiliation

● Software, Data and Technology (SDT)

Mandatory Status

Mandatory elective for
SDT

Entry Requirements

Pre-requisites

☒ Formal languages and
Parsers

☒ Functional
Programming

Co-requisites

☒ none

Knowledge, Abilities, or
Skills

Understanding of
propositional logic

Frequency

Annually
(Spring)

Forms of Learning and
Teaching

● Lecture attendance

(17.5 hours)
● Tutorial attendance

(17.5 hours)
● Independent study

(50 hours)
● Exam preparation

(20 hours)

Duration

1 semester

Workload

125 hours

Recommendations for Preparation

To master the module students need the knowledge obtained as a result of studying "Formal languages and Parsers"
and "Functional programming".

Content and Educational Aims

The range of topics covered in this module includes approaches for formally describing semantics of a programming
language as well as methods for proving the correctness of program transformations.

Content:

• Big-step and small-step operational semantics of imperative programming languages,
• Denotational semantics,
• Hoare's Axiomatic Semantics,
• Semantics of languages with multithreading.

Intended Learning Outcomes

Upon completion of this module, students will know:

1. the basic styles of programming language semantics: denotational, operational, axiomatic. Is able to reasonably
describe the chosen style and the advantages of its use for a particular task.

2. the notion of semantic equivalence of programs and expressions. Knows variants of definitions and their
relationships, justification of properties of program transformations.

3. the concept of operational semantics. Knows how to use big-step and small-step semantics.
4. the formalization of various semantics and proofs of their properties in Coq as well as verify programs using

Hoare logic.

83

Indicative Literature

"Introduction to the Theory of Programming Languages" by Michel Parigot, published by Cambridge University Press
(1992)

"Semantics of Programming Languages" by Carl A. Gunter, published by MIT Press (1992)

"Semantics Engineering with PLT Redex" by Matthew Flatt, Robert Bruce Findler, and Shriram Krishnamurthi, published
by MIT Press (2013)

"Programming Language Foundations" by Brian A. Malloy, published by Cambridge University Press (2018)

"Semantics with Applications: An Appetizer" by Hanne Riis Nielson and Flemming Nielson, published by Springer (2007)

Glynn Winskel. The Formal Semantics of Programming Languages;

Benjamin Pierce et al. Software Foundations (Vol. 1, 2)

https://softwarefoundations.cis.upenn.edu/

F.Nielson, H-R.Nielson. Semantics with Applications. A formal introduction.

Usability and Relationship to other Modules

• In terms of career prospects, knowledge of semantics of programming languages is relevant for anyone working
in the field of programming languages, compilers, programming tools, programming languages design, formal
verification, and many other areas.

• This course is used for developing a deeper understanding of how programming languages are designed,
implemented, and used, for gaining a solid foundation in formal semantics and type systems, which can be
applied to programming languages and other formal systems.

Examination Type: Module Component Examination

Component 1: Lecture

Assessment: Written examination Duration: 60 min
 Weight: 50%
Scope: All theoretical intended learning outcomes of the module

Component 2: Tutorial

Assessment: Program code
 Weight: 50%
Scope: All practical intended learning outcomes of the module

Completion: To pass this module, the examination of each module component has to be passed with at least
45%.

https://softwarefoundations.cis.upenn.edu/

84

7.30 Internship / Startup and Career Skills

Module Name Module Code Level (type) CP
Internship / Startup and Career Skills CA-INT-900 Year 3

(CAREER)
15

Module Components

Number Name Type CP
CA-INT-900-0 Internship Internship 15

Module
Coordinator

Clémentine
Senicourt &
Dr. Tanja Woebs
(CSC
Organization);
SPC / Faculty
Startup
Coordinator
(Academic
responsibility)

Program Affiliation

• CAREER module for undergraduate study programs

Mandatory Status

Mandatory for all undergraduate
study programs except IEM

Entry
Requirements

Pre-requisites

☒ at least 15 CP
from CORE
modules in the
major

Co-requisites

☒ None

Knowledge, Abilities, or
Skills

• Information provided

on CSC pages (see
below)

• Major specific
knowledge and skills

Frequency

Annually
(Spring/Fall)

Forms of Learning and Teaching

• Internship/Start-up
• Internship event
• Seminars, info-sessions,

workshops and career
events

• Self-study, readings, online
tutorials

Duration
 1 semester

Workload

375 Hours consisting of:
• Internship (308 hours)
• Workshops (33 hours)
• Internship Event (2 hours)
• Self-study (32 hours)

Recommendations for Preparation

• Please see the section “Knowledge Center” at JobTeaser Career Center for information on Career Skills seminar and

workshop offers and for online tutorials on the job market preparation and the application process. For more
information, please see https://constructor.university/student-life/career-services

• Participating in the internship events of earlier classes

Content and Educational Aims

The aims of the internship module are reflection, application, orientation, and development: for students to reflect on their
interests, knowledge, skills, their role in society, the relevance of their major subject to society, to apply these skills and this
knowledge in real life whilst getting practical experience, to find a professional orientation, and to develop their personality
and in their career. This module supports the programs’ aims of preparing students for gainful, qualified employment and the
development of their personality

The full-time internship must be related to the students’ major area of study and extends lasts a minimum of two consecutive
months, normally scheduled just before the 5th semester, with the internship event and submission of the internship report

https://constructor.university/student-life/career-services

85

in the 5th semester. Upon approval by the SPC and SCS, the internship may take place at other times, such as before teaching
starts in the 3rd semester or after teaching finishes in the 6th semester. The Study Program Coordinator or their faculty
delegate approves the intended internship a priori by reviewing the tasks in either the Internship Contract or Internship
Confirmation from the respective internship institution or company. Further regulations as set out in the Policies for Bachelor
Studies apply.

Students will be gradually prepared for the internship in semesters 1 to 4 through a series of mandatory information sessions,
seminars, and career events. The purpose of the Student Career Support Information Sessions is to provide all students with
basic facts about the job market in general, and especially in Germany and the EU, and services provided by the Student Career
Support.

In the Career Skills Seminars, students will learn how to engage in the internship/job search, how to create a competitive
application (CV, Cover Letter, etc.), and how to successfully conduct themselves at job interviews and/or assessment centers.
In addition to these mandatory sections, students can customize their skill set regarding application challenges and their
intended career path in elective seminars.

Finally, during the Career Events organized by the Career Service Center (e.g. the annual Constructor Career Fair and single
employer events on and off campus), students will have the opportunity to apply their acquired job market skills in an actual
internship/job search situation and to gain their desired internship in a high-quality environment and with excellent
employers.

As an alternative to the full-time internship, students can apply for the StartUp Option. Following the same schedule as the
full-time internship, the StartUp Option allows students who are particularly interested in founding their own company to
focus on the development of their business plan over a period of two consecutive months. Participation in the StartUp Option
depends on a successful presentation of the student’s initial StartUp idea. This presentation will be held at the beginning of
the 4th semester. A jury of faculty members will judge the student’s potential to realize their idea and approve the
participation of the students. The StartUp Option is supervised by the Faculty StartUp Coordinator. At the end of StartUp
Option, students submit their business plan. Further regulations as outlined in the Policies for Bachelor Studies apply.

The concluding Internship Event will be conducted within each study program (or a cluster of related study programs) and will
formally conclude the module by providing students the opportunity to present on their internships and reflect on the lessons
learned within their major area of study. The purpose of this event is not only to self-reflect on the whole internship process,
but also to create a professional network within the academic community, especially by entering the Alumni Network after
graduation. It is recommended that all three classes (years) of the same major are present at this event to enable networking
between older and younger students and to create an educational environment for younger students to observe the “lessons
learned” from the diverse internships of their elder fellow students.

Intended Learning Outcomes

By the end of this module, students will be able to

1. describe the scope and the functions of the employment market and personal career development;
2. apply professional, personal, and career-related skills for the modern labor market, including self-organization,

initiative and responsibility, communication, intercultural sensitivity, team and leadership skills, etc.;
3. independently manage their own career orientation processes by identifying personal interests, selecting appropriate

internship locations or start-up opportunities, conducting interviews, succeeding at pitches or assessment centers,
negotiating related employment, managing their funding or support conditions (such as salary, contract, funding,
supplies, workspace, etc.);

4. apply specialist skills and knowledge acquired during their studies to solve problems in a professional environment and
reflect on their relevance in employment and society;

5. justify professional decisions based on theoretical knowledge and academic methods;
6. reflect on their professional conduct in the context of the expectations of and consequences for employers and their

society;
7. reflect on and set their own targets for the further development of their knowledge, skills, interests, and values;
8. establish and expand their contacts with potential employers or business partners, and possibly other students and

alumni, to build their own professional network to create employment opportunities in the future;
9. discuss observations and reflections in a professional network.

Indicative Literature

Not specified

86

Usability and Relationship to other Modules

• This module applies skills and knowledge acquired in previous modules to a professional environment and provides an
opportunity to reflect on their relevance in employment and society. It may lead to thesis topics.

Examination Type: Module Examination

Assessment Type: Internship Report or Business Plan and Reflection Length: approx. 3.500 words
Scope: All intended learning outcomes Weight: 100%

87

7.31 Bachelor Thesis and Seminar in SDT

Module Name Module Code Level (type) CP

Bachelor Thesis and Seminar SDT SDT-400 Year 3 (CAREER) 15

Module Components

Number Name Type CP

SDT-400-S Thesis SDT Thesis 12

SDT-400-T Thesis Seminar SDT Seminar 3

Module Coordinator

Study Program Chair

Program Affiliation

• All undergraduate programs

Mandatory Status

Mandatory for all
undergraduate programs

Entry Requirements

Pre-requisites

☒ Students must
have taken and
successfully passed
a total of at least 30
CP from advanced
modules, and of
those, at least 20 CP
from advanced
modules in the
major.

Co-requisites

☒ None

Knowledge, Abilities, or Skills

comprehensive knowledge of
the subject and deeper insight
into the chosen topic;
ability to plan and undertake
work independently;
skills to identify and critically
review literature.

Frequency

Annually
(Spring)

Forms of Learning and
Teaching

• Self-study/lab work (350
hours)

• Seminars (25 hours)

Duration

14-week lecture
period

Workload

375 hours

Recommendations for Preparation

• Identify an area or a topic of interest and discuss this with your prospective supervisor in a timely manner.
• Create a research proposal including a research plan to ensure timely submission.
• Ensure you possess all required technical research skills or are able to acquire them on time.
• Review the University’s Code of Academic Integrity and Guidelines to Ensure Good Academic Practice.

88

Content and Educational Aims

This module is a mandatory graduation requirement for all undergraduate students to demonstrate their ability to address a
problem from their respective major subject independently using academic/scientific methods within a set time frame.
Although supervised, this module requires students to be able to work independently and systematically and set their own
goals in exchange for the opportunity to explore a topic that excites and interests them personally and that a faculty member
is interested in supervising. Within this module, students apply their acquired knowledge about their major discipline and their
learned skills and methods for conducting research, ranging from the identification of suitable (short-term) research projects,
preparatory literature searches, the realization of discipline-specific research, and the documentation, discussion,
interpretation, and communication of research results.

This module consists of two components, an independent thesis and an accompanying seminar. The thesis component must
be supervised by a Constructor University faculty member and requires short-term research work, the results of which must
be documented in a comprehensive written thesis including an introduction, a justification of the methods, results, a discussion
of the results, and a conclusion. The seminar provides students with the opportunity to practice their ability to present, discuss,
and justify their and other students’ approaches, methods, and results at various stages of their research in order to improve
their academic writing, receive and reflect on formative feedback, and therefore grow personally and professionally.

Intended Learning Outcomes

On completion of this module, students will be able to:

1. independently plan and organize advanced learning processes;

2. design and implement appropriate research methods, taking full account of the range of alternative techniques and
approaches;

3. collect, assess, and interpret relevant information;

4. draw scientifically-founded conclusions that consider social, scientific, and ethical factors;

5. apply their knowledge and understanding to a context of their choice;

6. develop, formulate, and advance solutions to problems and debates within their subject area, and defend these
through argument;

7. discuss information, ideas, problems, and solutions with specialists and non-specialists.

Usability and Relationship to other Modules

• This module builds on all previous modules in the undergraduate program. Students apply the knowledge, skills,
and competencies they have acquired and practiced during their studies, including research methods and their
ability to acquire additional skills independently as and if required.

Examination Type: Module Component Examinations

Module Component 1: Thesis
Assessment type: Thesis
Scope: All intended learning outcomes, mainly 1-6.

Module Component 2: Seminar

Length: approx. 6.000 – 8.000 words (15 – 25 pages),
excluding front and back matter.
Weight: 80%

Assessment type: Presentation Duration: approx. 15 to 30 minutes
 Weight: 20%

Scope: The presentation focuses mainly on ILOs 6 and 7, but by nature of these ILOs it also touches on the others.

Completion: To pass this module, both module component examinations have to be passed with at least 45%.

Two separate assessments are justified by the size of this module and the fact that the justification of solutions to problems
and arguments (ILO 6) and discussion (ILO 7) should at least have verbal elements. The weights of the types of assessments
are commensurate with the sizes of the respective module components.

89

8 Constructor Track Modules

8.1 Methods

 Elements of Linear Algebra

Module Name Module Code Level (type) CP
Elements of Linear Algebra CTMS-MAT-24 Year 1 (Methods) 5

Module Components

Number Name Type CP

CTMS-24 Elements of Linear Algebra Lecture 5

Module Coordinator

Dr. Keivan Mallahi
Karai

Program Affiliation

• CONSTRUCTOR Track Area

Mandatory Status
Mandatory elective for CS,
RIS and SDT

Entry Requirements

Pre-requisites

☒ None

Co-requisites

☒ None

Knowledge, Abilities, or
Skills

Knowledge of Pre-
Calculus at High School
level (Functions, inverse
functions, sets, real
numbers, trigonometric
functions, parametric
equations, tangent lines,
graphs, elementary
methods for solving
systems of linear and
nonlinear equations)
Knowledge of Analytic
Geometry at High
School level (vectors,
lines, planes, reflection,
rotation, translation,
dot product, cross
product, normal vector,
polar coordinates)

Frequency

Annually
(Fall)

Forms of Learning and
Teaching

• Lectures (35 hours)
• Private study (90

hours)
Duration

1 semester

Workload

125 hours

Recommendations for Preparation

Review all of higher-level High School Mathematics, in particular the topics explicitly named in “Entry Requirements –
Knowledge, Ability, or Skills” above.
Content and Educational Aims

This module is the first in a sequence introducing mathematical methods at the university level in a form relevant for
study and research in the quantitative natural sciences, engineering, Computer Science. The emphasis in these modules
is on training operational skills and recognizing mathematical structures in a problem context. Mathematical rigor is used
where appropriate. However, a full axiomatic treatment of the subject is provided in the first-year modules “Analysis” and
“Linear Algebra”.

8.1.1

90

The lecture comprises the following topics

• Review of elementary analytic geometry
• Vector spaces, linear independence, bases, coordinates
• Matrices and matrix algebra
• Solving linear systems by Gauss elimination, structure of general solution
• LU decomposition and matrix inverse
• Linear maps and connection to matrices
• Determinant
• Eigenvalues and eigenvectors
• Hermitian and skew-Hermitian matrices
• Orthonormal bases, Gram-Schmidt orthonormalization and QR decomposition
• Fourier transform
• Singular value decomposition
• Principal Component Analysis and best low rank approximations

Intended Learning Outcomes
By the end of the module, students will be able to

1. apply the methods described in the content section of this module description to the extent that they can solve

standard text-book problems reliably and with confidence;
2. recognize the mathematical structures in an unfamiliar context and translate them into a mathematical problem

statement;
3. recognize common mathematical terminology and concepts used in textbooks and research papers in computer

science, engineering, and mathematics to the extent that they fall into the content categories covered in this module.
4. independently prove results which are direct consequences of those proved in the lectures;
5. understand and use fundamental mathematical terminology to communicate mathematical ideas.

Indicative Literature

• Gilbert Strang, Introduction to Linear Algebra, Fifth Edition (2016)
• S.A. Leduc Linear Algebra. Hoboken: Wiley (2003)

Usability and Relationship to other Modules

• A rigorous treatment of this topic is provided in the module “Linear Algebra.”

Examination Type: Module Examination

Assessment type: Written examination Duration: 120 min
 Weight: 100%

Scope: All intended learning outcomes of this module

Completion: To pass this module, the examination has to be passed with at least 45%.

91

 Elements of Calculus

Module Name Module
Code

Level (type) CP

Elements of Calculus CTMS-
MAT-25

Year 1
(Methods)

5

Module Components

Number Name Type CP

CTMS-25 Elements of Calculus Lecture 5

Module
Coordinator

Dr. Keivan
Mallahi Karai

Program Affiliation

• CONSTRUCTOR Track Area

Mandatory Status

Mandatory
elective for CS, RIS
and SDT

Entry
Requirements

Pre-requisites

☒

Co-
requisites

☒ None

Knowledge, Abilities, or Skills

Knowledge of Pre-Calculus at High School level
(Functions, inverse functions, sets, real numbers,
polynomials, rational functions, trigonometric
functions, logarithm and exponential function,
parametric equations, tangent lines, graphs.
Knowledge of Analytic Geometry at High School level
(vectors, lines, planes, reflection, rotation, translation,
dot product, cross product, normal vector, polar
coordinates)
Some familiarity with elementary Calculus (limits,
derivative) is helpful, but not strictly required.

Frequency

Annually
(Spring)

Forms of Learning
and Teaching

• Lectures (35

hours)
• Private study

(90 hours)
Duration

1 semester

Workload

125 hours

Recommendations for Preparation

Review the content of Linear Algebra

Content and Educational Aims

This module is the second in a sequence introducing mathematical methods at the university level in a form relevant for
study and research in the quantitative natural sciences, engineering, Computer Science. The emphasis in these modules
is on training operational skills and recognizing mathematical structures in a problem context. Mathematical rigor is used
where appropriate. However, a full axiomatic treatment of the subject is provided in the first-year modules “Analysis”.

The lecture comprises the following topics

• Sets, basic operations, and relations
• Functions, basic operations, compositions of functions, graphs of functions
• Brief introduction to real and complex numbers
• Limits for sequences and functions
• Continuity
• Derivatives of functions and its geometric interpretations
• Computing derivatives: linearity, product rule, chain rule
• Applications of derivatives, optimization for one-variable functions
• Introduction to Integration and the Fundamental Theorem of Calculus
• Differential equations, modeling simple dynamical systems
• Discrete derivative, summations, difference equations
• Functions of several variables, representations using graphs and level curves
• Basic ideas of multivariable calculus
• Partial derivatives and directional derivatives, total derivative
• Optimization in several variables, gradient descent, Lagrange multipliers
• Ordinary differential equations with several variables, simple examples
• Linear constant-coefficient ordinary differential equations

8.1.2

92

• Fourier series and their applications

Intended Learning Outcomes
By the end of the module, students will be able to

1. apply the methods described in the content section of this module description to the extent that they can solve

standard text-book problems reliably and with confidence;
2. recognize the mathematical structures in an unfamiliar context and translate them into a mathematical problem

statement;
3. recognize common mathematical terminology and concepts used in textbooks and research papers in computer

science, engineering, and mathematics to the extent that they fall into the content categories covered in this module.
4. independently prove results which are direct consequences of those proved in the lectures;
5. understand and use fundamental mathematical terminology to communicate mathematical ideas.

Indicative Literature

• James Stewart, Calculus: Early Transcendentals, (2015)
• S.I. Grossman, Calculus of one variable, 2nd edition, (2014)

Usability and Relationship to other Modules

• A rigorous treatment of this topic is provided in the module “Analysis”.

Examination Type: Module Examination

Assessment type: Written examination Duration: 120 min
 Weight: 100%

Scope: All intended learning outcomes of this module

Completion: To pass this module, the examination has to be passed with at least 45%.

93

 Matrix Algebra and Advanced Calculus I

Module Name
Matrix Algebra and Advanced Calculus I

Module Code
CTMS-MAT-22

Level (type)
Year 1
(Methods)

CP
5

Module Components

Number Name Type CP

CTMS-22 Matrix Algebra and Advanced Calculus I Lecture 5

Module
Coordinator

Dr. Keivan
Mallahi Karai

Program Affiliation

• CONSTRUCTOR Track Area

Mandatory Status

Mandatory for ECE, MMDA,
PHDS and SDT
Mandatory elective for CS
and RIS

Entry
Requirements

Pre-requisites

☒ none

Co-requisites

☒ none

Knowledge, Abilities, or
Skills
Knowledge of pre-calculus
ideas (sets and functions,
elementary functions,
polynomials) and analytic
geometry (equations of
lines, systems of linear
equations, dot product,
polar coordinates) at High
School level. Familiarity
with ideas of calculus is
helpful.

Frequency

Annually
(Fall)

Forms of Learning and
Teaching

• Lectures (35 hours)
• Private study (90 hours)

Duration

1 semester

Workload

125 hours

Recommendations for Preparation
Review of high school mathematics.

Content and Educational Aims

This module is the first in a sequence including advanced mathematical methods at the university level at a level higher
than the module Calculus and Linear Algebra I. The course comprises the following topics:

• Number systems, complex numbers
• The concept of function, composition of functions, inverse functions
• Basic ideas of calculus: Archimedes to Newton
• The notion of limit for functions and sequences and series
• Continuous function and their basic properties
• Derivatives: rate of change, velocity and applications
• Mean value theorem and estimation, maxima and minima, convex functions
• Integration, change of variables, Fundamental Theorem of Calculus
• Applications of the integral: work, area, average value, centre of mass
• Improper Integrals, Mean value theorem for integrals
• Taylor series
• Ordinary differential equations, examples, solving first order linear differential equations
• Basic ideas of numerical analysis, Newton's method, asymptotic formulas
• Review of elementary analytic geometry, lines, conics
• Vector spaces, linear independence, bases, coordinates
• Linear maps, matrices and their algebra, matrix inverses
• Gaussian elimination, solution space
• Determinants

8.1.3

94

Intended Learning Outcomes

Upon completion of this module, students will be able to

1. apply the methods described in the content section of this module description to the extent that they can
2. solve standard text-book problems reliably and with confidence;
3. recognize the mathematical structures in an unfamiliar context and translate them into a mathematical

problem statement;
4. recognize common mathematical terminology used in textbooks and research papers in the quantitative

sciences, engineering, and mathematics to the extent that they fall into the content categories covered in this
module.

Indicative Literature

Advanced Calculus, G.B. Folland (Pearson, 2002)

Linear Algebra, S. Lang (Springer Verlag, 1986)

Mathematical Methods for Physics and Engineering,

K. Riley, M. Hobson, S. Bence (Cambridge University Press, 2006)

Usability and Relationship to other Modules

• Calculus and Linear Algebra I can be substituted with this module after consulting academic advisor
• A more advanced treatment of multi-variable Calculus, in particular, its applications in Physics and

Mathematics, is provided in the second-semester module “Applied Mathematics”. All students taking “Applied
Mathematics” are expected to take this module as well as the module topics are closely synchronized.

• The second-semester module “Linear Algebra” provides a complete proof-driven development of the theory of
Linear Algebra. Diagonalization is covered more abstractly, with particular emphasis on degenerate cases. The
Jordan normal form is also covered in “Linear Algebra”, not in this module.

Examination Type: Module Examination

Assessment Type: Written examination Duration: 120 min
 Weight: 100%
Scope: All intended learning outcomes of the module.

Completion: To pass this module, the examination has to be passed with at least 45%.

95

 Matrix Algebra and Advanced Calculus II

Module Name
Matrix Algebra and Advanced Calculus II

Module Code
CTMS-MAT-23

Level (type)
Year 1
(Methods)

CP
5

Module Components

Number Name Type CP

CTMS-23 Matrix Algebra and Advanced Calculus II Lecture 5

Module
Coordinator

Prof. Dr. Keivan
Mallahi Karai

Program Affiliation

• CONSTRUCTOR Track Area

Mandatory Status

Mandatory for ECE, MMDA,
PHDS and SDT

Mandatory elective for CS
and RIS

Entry
Requirements

Pre-requisites

☒ Matrix Algebra
and Advanced
Calculus I

Co-requisites

☒ none

Knowledge, Abilities, or
Skills

• None beyond
formal pre-
requisites

Frequency

Annually
(Spring)

Forms of Learning and
Teaching
• Lectures (35 hours)
• Private study (90 hours)

Duration

1 semester

Workload

125 hours

Recommendations for Preparation

Review the content of Matrix Algebra and Advanced Calculus I
Content and Educational Aims

• Coordinate systems, functions of several variables, level curves, polar coordinates
• Continuity, directional derivatives, partial derivatives, chain rule (version I)
• derivative as a matrix, chain rule (version II), tangent planes and linear approximation, gradient, repeated partial

derivatives
• Minima and Maxima of functions of several variables, Lagrange multipliers
• Multiple integrals, iterated integrals, integration over standard regions, change of variables formula
• Vector fields, parametric representation of curves, line integrals and arc length, conservative vector fields
• Potentials, Green's theorem in the plane
• Parametric representation of surfaces
• Vector products and normal surface integrals
• Integral theorems by Stokes and Gauss, physical interpretations
• Basics of differential forms and their calculus, connection to gradient, curl, and divergence
• Eigenvalues and eigenvectors, diagonalisable matrices
• Inner product spaces, Hermitian and unitary matrices
• Matrix factorizations: Singular value decomposition with applications, LU decomposition, QR decomposition
• Linear constant-coefficient ordinary differential equations, application to mechanical vibrations and electrical

oscillations
• Periodic functions, Fourier series

Intended Learning Outcomes

Upon completion of this module, students will be able to

1. understand the definitions of continuity, derivative of a function as a linear transformation, multivariable
integrals, eigenvalues and eigenvectors and associated notions.

2. apply the methods described in the content section of this module description to the extent that they can
3. evaluate multivariable integrals using definitions or by applying Green and Stokes theorem.
4. evaluate various decompositions of matrices
5. solve standard text-book problems reliably and with confidence;

8.1.4

96

6. recognize the mathematical structures in an unfamiliar context and translate them into a mathematical
problem statement;

7. recognize common mathematical terminology used in textbooks and research papers in the quantitative
sciences, engineering, and mathematics to the extent that they fall into the content categories covered in this
module.

Indicative Literature

Advanced Calculus, G.B. Folland (Pearson, 2002)

Linear Algebra, S. Lang (Springer Verlag, 1986)

Mathematical Methods for Physics and Engineering,

K. Riley, M. Hobson, S. Bence (Cambridge University Press, 2006)

Vector Calculus, Linear Algebra, and Differential Forms: A Unified

Approach, J.H. Hubbard, B. Hubbard (Pearson, 1998)

Usability and Relationship to other Modules

• This module can substitute Calculus and Linear Algebra II after consulting academic advisor.
• Methods of this course are applied in the module Mathematical Modeling.
• The second-semester module Linear Algebra provides a more rigorous and more abstract treatment of

some of the notions discussed in this module.

Examination Type: Module Examination

Assessment Component: Written examination Length/duration: (120min)
 Weight: 100 %

Scope: All intended learning outcomes of this module

Completion: To pass this module, the examination has to be passed with at least 45%.

97

 Probability and Random Processes

Module Name Module Code Level (type) CP
Probability and Random Processes CTMS-MAT-12 Year 2

(Methods)
5

Module Components

Number Name Type CP

CTMS-12 Probability and random processes Lecture 5

Module Coordinator

Dr. Keivan Mallahi
Karai

Program Affiliation

• CONSTRUCTOR Track Area

Mandatory Status

Mandatory for CS, ECE,
MMDA, PHDS, RIS and
SDT

Entry Requirements

Pre-requisites

☒ Matrix Algebra
and Advanced
Calculus II or
Calculus and Linear
Algebra II

Co-requisites

☒ None

Knowledge, Abilities, or Skills

Knowledge of calculus at the
level of a first year calculus
module (differentiation,
integration with one and
several variables,
trigonometric functions,
logarithms and exponential
functions). Knowledge of
linear algebra at the level of a
first-year university module
(eigenvalues and eigenvectors,
diagonalization of matrices).
Some familiarity with
elementary probability theory
at the high school level.

Frequency

Annually (Fall)

Forms of Learning and
Teaching

Lectures (35 hours)
Private study (90 hours)

Duration

1 semester

Workload

125 hours

Recommendations for Preparation

Review all of the first-year calculus and linear algebra modules as indicated in “Entry Requirements – Knowledge, Ability,
or Skills” above.

8.1.5

98

Content and Educational Aims

This module aims to provide a basic knowledge of probability theory and random processes suitable for students in
engineering, Computer Science, and Mathematics. The module provides students with basic skills needed for formulating
real-world problems dealing with randomness and probability in mathematical language, and methods for applying a
toolkit to solve these problems. Mathematical rigor is used where appropriate. A more advanced treatment of the subject
is deferred to the third-year module Stochastic Processes.

The lecture comprises the following topics
• Brief review of number systems, elementary functions, and their graphs
• Outcomes, events and sample space.
• Combinatorial probability.
• Conditional probability and Bayes’ formula.
• Binomials and Poisson-Approximation
• Random Variables, distribution and density functions.
• Independence of random variables.
• Conditional Distributions and Densities.
• Transformation of random variables.
• Joint distribution of random variables and their transformations.
• Expected Values and Moments, Covariance.
• High dimensional probability: Chebyshev and Chernoff bounds.
• Moment-Generating Functions and Characteristic Functions,
• The Central limit theorem.
• Random Vectors and Moments, Covariance matrix, Decorrelation.
• Multivariate normal distribution.
• Markov chains, stationary distributions.

Intended Learning Outcomes

By the end of the module, students will be able to

1. command the methods described in the content section of this module description to the extent that they
can solve standard text-book problems reliably and with confidence;

2. recognize the probabilistic structures in an unfamiliar context and translate them into a mathematical
problem statement;

3. recognize common mathematical terminology used in textbooks and research papers in the quantitative
sciences, engineering, and mathematics to the extent that they fall into the content categories covered in
this module.

Indicative Literature

J. Hwang and J.K. Blitzstein (2019). Introduction to Probability, second edition. London: Chapman & Hall.

S. Ghahramani. Fundamentals of Probability with Stochastic Processes, fourth edition. Upper Saddle River: Prentice Hall.

Usability and Relationship to other Modules

• Students taking this module are expected to be familiar with basic tools from calculus and linear algebra.

Examination Type: Module Examination

Assessment type: Written examination Duration: 120 min
 Weight: 100%
Scope: All intended learning outcomes of this module

Completion: To pass this module, the examination has to be passed with at least 45%.

99

 Statistics and Data Analytics

Module Name
Statistics and Data Analytics

Module Code
CTMS-MET-21

Level (type)
Year 2
(Methods)

CP
5

Module Components

Number
CTMS-21 Statistics and Data Analytics Lecture 5

Module
Coordinator

Dr. Ivan
Ovsyannikov

Program Affiliation

• CONSTRUCTOR Track Area

Mandatory Status

Mandatory for MMDA, PHDS
and SDT

Entry Requirements

Pre-requisites

☒ Probability and
Random Processes

Co-requisites

☒ none

Knowledge, Abilities, or
Skills
Good command of basic
probability

Frequency

Annually
(Spring)

Forms of Learning and
Teaching

• Lectures (35 hours)
• Private Study (105 hours)

Duration
1 semester

Workload

120 hours

Recommendations for Preparation

Recap Probability and Random Processes

Content and Educational Aims

The aims of this module is to introduce students to basic ideas and methods used for analysing large and complex datasets.
While the first modern statistical toolkits date back to the beginning of the twentieth century, the advent of computer
age and the availability of fast computations has lead to dramatic changes in the field.

Statistical models have found applications in many areas ranging from business and healthcare to astrophysics and speech
recognition. Such models are used to make predictions, draw inferences and support policy decisions in all these areas.

This module draws on students’ knowledge from the module Probability and Random Processes to help them build and
analyze statistical models, ranging in their degree of sophistication from basis to more advanced ones, and apply them to
real-world situations. The module will cover the following topics:

• Classical statistics: descriptive and inferential modes, parameter estimation and hypothesis testing.
• Linear regressions, multiple linear regressions
• Classification: logistic regression, generative models for classification
• Resampling methods, bootstrap
• Non-linear models, splines
• Support vector machines
• Basic ideas of deep learning

Intended Learning Outcomes

Upon completion of this module, students will be able to

1. formulate statistical models for real world problems
2. describe statistical methods for analyzing real world problems
3. explain the importance of linear and non-linear models
4. recognize different solution methods for modeling problems

8.1.6

100

5. illustrate the use of regressions, resampling, support vector machines and other statistical tools to describe
phenomena in the real world

6. Describe basic ideas of deep learning

Indicative Literature

James, Witten, Hastie, Tibshirani. An introduction to Statistical learning; second edition.

Usability and Relationship to other Modules

• This module is part of the core education in Mathematics, Modeling and Data Analytics and Physics and Data
Science.

• It is also valuable for students in Computer Science, RIS, and ECE, either as part of a minor in Mathematics, or
as an elective module.

Examination Type: Module Examination

Assessment Type: Written examination Duration/length: 120 min
 Weight: 100%
Scope: All intended learning outcomes of this module

Completion: To pass this module, the examination has to be passed with at least 45%.

101

8.2 New Skills

 Logic (perspective I)

Module Name
Logic (perspective I)

Module Code
CTNS-NSK-01

Level (type)
Year 2
(New Skills)

CP
2.5

Module Components

Number Name Type CP

CTNS-01 Logic (perspective I) Lecture (online) 2.5

Module
Coordinator

Prof. Dr. Jules
Coleman

Program Affiliation

• CONSTRUCTOR Track Area

Mandatory Status

Mandatory elective for all UG
students (one perspective
must be chosen)

Entry
Requirements

Pre-requisites

☒ none

Co-requisites

☒ none

Knowledge, Abilities, or
Skills

Frequency

Annually
(Fall)

Forms of Learning and
Teaching

Online lecture (17.5h)
Private study (45h)

Duration

1 semester

Workload

62.5 hours

Recommendations for Preparation

Content and Educational Aims

Suppose a friend asks you to help solve a complicated problem? Where do you begin? Arguably, the first and most difficult
task you face is to figure out what the heart of the problem actually is. In doing that you will look for structural similarities
between the problem posed and other problems that arise in different fields that others may have addressed successfully.
Those similarities may point you to a pathway for resolving the problem you have been asked to solve. But it is not enough
to look for structural similarities. Sometimes relying on similarities may even be misleading. Once you’ve settled
tentatively on what you take to be the heart of the matter, you will naturally look for materials, whether evidence or
arguments, that you believe is relevant to its potential solution. But the evidence you investigate of course depends on
your formulation of the problem, and your formulation of the problem likely depends on the tools you have available –
including potential sources of evidence and argumentation. You cannot ignore this interactivity, but you can’t allow
yourself to be hamstrung entirely by it. But there is more. The problem itself may be too big to be manageable all at once,
so you will have to explore whether it can be broken into manageable parts and if the information you have bears on all
or only some of those parts. And later you will face the problem of whether the solutions to the particular sub problems
can be put together coherently to solve the entire problem taken as a whole.

What you are doing is what we call engaging in computational thinking. There are several elements of computational
thinking illustrated above. These include: Decomposition (breaking the larger problem down into smaller ones); Pattern
recognition (identifying structural similarities); Abstraction (ignoring irrelevant particulars of the problem): and Creating
Algorithms), problem-solving formulas.

But even more basic to what you are doing is the process of drawing inferences from the material you have. After all,
how else are you going to create a problem-solving formula, if you draw incorrect inferences about what information has
shown and what, if anything follows logically from it. What you must do is apply the rules of logic to the information to
draw inferences that are warranted.

8.2.1

102

We distinguish between informal and formal systems of logic, both of which are designed to indicate fallacies as well as
warranted inferences. If I argue for a conclusion by appealing to my physical ability to coerce you, I prove nothing about
the truth of what I claim. If anything, by doing so I display my lack of confidence in my argument. Or if the best I can do
is berate you for your skepticism, I have done little more than offer an ad hominem instead of an argument. Our focus
will be on formal systems of logic, since they are at the heart of both scientific argumentation and computer developed
algorithms. There are in fact many different kinds of logic and all figure to varying degrees in scientific inquiry. There are
inductive types of logic, which purport to formalize the relationship between premises that if true offer evidence on behalf
of a conclusion and the conclusion and are represented as claims about the extent to which the conclusion is confirmed
by the premises. There are deductive types of logic, which introduce a different relationship between premise and
conclusion. These variations of logic consist in rules that if followed entail that if the premises are true then the conclusion
too must be true.

There are also modal types of logic which are applied specifically to the concepts of necessity and possibility, and thus to
the relationship among sentences that include either or both those terms. And there is also what are called deontic logic,
a modification of logic that purport to show that there are rules of inference that allow us to infer what we ought to do
from facts about the circumstances in which we find ourselves. In the natural and social sciences most of the emphasis
has been placed on inductive logic, whereas in math it is placed on deductive logic, and in modern physics there is an
increasing interest in the concepts of possibility and necessity and thus in modal logic. The humanities, especially
normative discussions in philosophy and literature are the province of deontic logic.

This module will also take students through the central aspects of computational thinking, as it is related to logic; it will
introduce the central concepts in each, their relationship to one another and begin to provide the conceptual apparatus
and practical skills for scientific inquiry and research.
Intended Learning Outcomes

Students acquire transferable and key skills in this module.

By the end of this module, the students will be able to

1. apply the various principles of logic and expand them to computational thinking.
2. understand the way in which logical processes in humans and in computers are similar and different at the

same time.

3. apply the basic rules of first-order deductive logic and employ them rules in the context of creating a
scientific or social scientific study and argument.

4. employ those rules in the context of creating a scientific or social scientific study and argument

Indicative Literature

Frege, Gottlob (1879), Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens
[Translation: A Formal Language for Pure Thought Modeled on that of Arithmetic],Halle an der Salle: Verlag von Louis
Nebert.

Gödel, Kurt (1986), Russels mathematische Logik. In: Alfred North Whitehead, Bertrand Russell: Principia Mathematica.
Vorwort, S. V–XXXIV. Suhrkamp.

Leeds, Stephen. "George Boolos and Richard Jeffrey. Computability and logic. Cambridge University Press, New York and
London1974, x+ 262 pp." The Journal of Symbolic Logic 42.4 (1977): 585-586.

Kubica, Jeremy. Computational fairy tales. Jeremy Kubica, 2012.

McCarthy, Timothy. "Richard Jeffrey. Formal logic: Its scope and limits. of XXXVIII 646. McGraw-Hill Book Company, New
York etc. 1981, xvi+ 198 pp." The Journal of Symbolic Logic 49.4 (1984): 1408-1409.

Usability and Relationship to other Modules

Examination Type: Module Examination

Assessment Type: Written Examination Duration/Length: 60 min
 Weight: 100%
Scope: All intended learning outcomes of the module.

Completion: To pass this module, the examination has to be passed with at least 45%.

103

 Logic (perspective II)

Module Name
Logic (perspective II)

Module Code
CTNS-NSK-02

Level (type)
Year 2
(New Skills)

CP
2.5

Module Components

Number Name Type CP

CTNS-02 Logic (perspective II) Lecture (online) 2.5

Module
Coordinator

NN

Program Affiliation

• CONSTRUCTOR Track Area

Mandatory Status

Mandatory elective for all UG
students (one perspective
must be chosen)

Entry
Requirements

Pre-requisites

☒ none

Co-requisites

☒ none

Knowledge, Abilities, or
Skills

Frequency

Annually
(Fall)

Forms of Learning and
Teaching

Online lecture (17.5h)
Private study (45h)

Duration

1 semester

Workload

62.5 hours

Recommendations for Preparation

Content and Educational Aims

The focus of this module is on formal systems of logic, since they are at the heart of both scientific argumentation and
computer developed algorithms. There are in fact many kinds of logic and all figure to varying degrees in scientific inquiry.
There are inductive types of logic, which purport to formalize the relationship between premises that if true offer evidence
on behalf of a conclusion and the conclusion and are represented as claims about the extent to which the conclusion is
confirmed by the premises. There are deductive types of logic, which introduce a different relationship between premise
and conclusion. These variations of logic consist in rules that if followed entail that if the premises are true then the
conclusion too must be true.

This module introduces logics that go beyond traditional deductive propositional logic and predicate logic and as such it
is aimed at students who are already familiar with basics of traditional formal logic. The aim of the module is to provide
an overview of alternative logics and to develop a sensitivity that there are many different logics that can provide effective
tools for solving problems in specific application domains.

The module first reviews the principles of a traditional logic and then introduces many-valued logics that distinguish more
than two truth values, for example true, false, and unknown. Fuzzy logic extends traditional logic by replacing truth values
with real numbers in the range 0 to 1 that are expressing how strong the believe into a proposition is. Modal logics
introduce modal operators expressing whether a proposition is necessary or possible. Temporal logics deal with
propositions that are qualified by time. Once can view temporal logics as a form of modal logics where propositions are
qualified by time constraints. Interval temporal logic provides a way to reason about time intervals in which propositions
are true.

The module will also investigate the application of logic frameworks to specific classes of problems. For example, a special
subset of predicate logic, based on so-called Horn clauses, forms the basis of logic programming languages such as Prolog.
Description logics, which are usually decidable logics, are used to model relationships and they have applications in the
semantic web, which enables search engines to reason about resources present on the Internet.

8.2.2

104

Intended Learning Outcomes

Students acquire transferable and key skills in this module.

By the end of this module, the students will be able to

1. apply the various principles of logic
2. explain practical relevance of non-standard logic
3. describe how many-valued logic extends basic predicate logic
4. apply basic rules of fuzzy logic to calculate partial truth values
5. sketch basic rules of temporal logic
6. implement predicates in a logic programming language
7. prove some simple non-standard logic theorems

Indicative Literature

Bergmann, Merry. “An Introduction to Many-Valued and Fuzzy Logic: Semantics, Algebras, and Derivation Systems”,
Cambridge University Press, April 2008.

Sterling, Leon S., Ehud Y. Shapiro, Ehud Y. "The Art of Prolog", 2nd edition, MIT Press, March 1994.

Fisher, Michael. “An Introduction to Practical Formal Methods Using Temporal Logic”, Wiley, Juli 2011.

Baader, Franz. "The Description Logic Handbook: Theory Implementation and Applications", Cambridge University Press,
2nd edition, May 2010.

Usability and Relationship to other Modules

Examination Type: Module Examination

Assessment Type: Written Examination Duration/Length: 60 min
 Weight: 100%
Scope: All intended learning outcomes of the module.

Completion: To pass this module, the examination has to be passed with at least 45%.

105

 Causation and Correlation (perspective I)

Module Name

Causation and Correlation (perspective I)

Module Code
CTNS-NSK-03

Level (type)
Year 2
(New Skills)

CP
2.5

Module Components

Number Name Type CP

CTNS-03 Causation and Correlation Lecture (online) 2.5

Module
Coordinator

Prof. Dr. Jules
Coleman

Program Affiliation

• CONSTRUCTOR Track Area

Mandatory Status

Mandatory elective for all UG
students (one perspective
must be chosen)

Entry
Requirements

Pre-requisites

☒ none

Co-requisites

☒ none

Knowledge, Abilities, or
Skills

Frequency

Annually
(Spring)

Forms of Learning and
Teaching

Online lecture (17.5h)
Private study (45h)

Duration

1 semester

Workload

62.5 hours

Recommendations for Preparation

Content and Educational Aims

In many ways, life is a journey. And also, as in other journeys, our success or failure depends not only on our personal
traits and character, our physical and mental health, but also on the accuracy of our map. We need to know what the
world we are navigating is actually like, the how, why and the what of what makes it work the way it does. The natural
sciences provide the most important tool we have developed to learn how the world works and why it works the way it
does. The social sciences provide the most advanced tools we have to learn how we and other human beings, similar in
most ways, different in many others, act and react and what makes them do what they do. In order for our maps to be
useful, they must be accurate and correctly reflect the way the natural and social worlds work and why they work as they
do.

The natural sciences and social sciences are blessed with enormous amounts of data. In this way, 105istoryy and the
present are gifts to us. To understand how and why the world works the way it does requires that we are able to offer an
explanation of it. The data supports a number of possible explanations of it. How are we to choose among potential
explanations? Explanations, if sound, will enable us to make reliable predictions about what the future will be like, and
also to identify many possibilities that may unfold in the future. But there are differences not just in the degree of
confidence we have in our predictions, but in whether some of them are necessary future states or whether all of them
are merely possibilities? Thus, there are three related activities at the core of scientific inquiry: understanding where we
are now and how we got here (historical); knowing what to expect going forward (prediction); and exploring how we can
change the paths we are on (creativity).

At the heart of these activities are certain fundamental concepts, all of which are related to the scientific quest to uncover
immutable and unchanging laws of nature. Laws of nature are thought to reflect a causal nexus between a previous event
and a future one. There are also true statements that reflect universal or nearly universal connections between events
past and present that are not laws of nature because the relationship they express is that of a correlation between events.
A working thermostat accurately allows us to determine or even to predict the temperature in the room in which it is
located, but it does not explain why the room has the temperature it has. What then is the core difference between
causal relationships and correlations? At the same time, we all recognize that given where we are now there are many
possible futures for each of us, and even had our lives gone just the slightest bit differently than they have, our present
state could well have been very different than it is. The relationship between possible pathways between events that have
not materialized but could have is expressed through the idea of counterfactual.

8.2.3

106

Creating accurate roadmaps, forming expectations we can rely on, making the world a more verdant and attractive place
requires us to understand the concepts of causation, correlation, counterfactual explanation, prediction, necessity,
possibility, law of nature and universal generalization. This course is designed precisely to provide the conceptual tools
and intellectual skills to implement those concepts in our future readings and research and ultimately in our experimental
investigations, and to employ those tools in various disciplines.

Intended Learning Outcomes

Students acquire transferable and key skills in this module.

By the end of this module, the students will be able to

1. formulate testable hypotheses that are designed to reveal causal connections and those designed to
reveal interesting, important and useful correlations.

2. distinguish scientifically interesting correlations from unimportant ones.
3. apply critical thinking skills to evaluate information.
4. understand when and why inquiry into unrealized possibility is important and relevant.

Indicative Literature

Thomas S. Kuhn: The Structure of Scientific Revolutions, Nelson, fourth edition 2012;

Goodman, Nelson. Fact, fiction, and forecast. Harvard University Press, 1983;

Quine, Willard Van Orman, and Joseph Silbert Ullian. The web of belief. Vol. 2. New York: Random house, 1978.

Usability and Relationship to other Modules

Examination Type: Module Examination

Assessment Type: Written Examination Duration/Length: 60 min
 Weight: 100%
Scope: All intended learning outcomes of the module

Completion: To pass this module, the examination has to be passed with at least 45%.

107

 Causation and Correlation (perspective II)

Module Name

Causation and Correlation (perspective II)

Module Code

CTNS-NSK-04

Level (type)

Year 2
(New Skills)

CP

2.5

Module Components

Number Name Type CP

CTNS-04 Causation and Correlations (perspective II) Lecture (online) 2.5

Module
Coordinator

Dr. Keivan
Mallahi-Karai
Dr. Eoin Ryan
Dr. Irina Chiaburu

Program Affiliation

• CONSTRUCTOR Track Area

Mandatory Status

Mandatory elective for all UG
students (one perspective
must be chosen)

Entry
Requirements

Pre-requisites

☒ none

Co-requisites

☒ none

Knowledge, Abilities, or
Skills
Basic probability theory

Frequency

Annually

(Spring)

Forms of Learning and
Teaching

Online lecture (17.5h)

Private study (45h
Duration

1 semester

Workload

62.5 hours

Recommendations for Preparation

Content and Educational Aims

Causality or causation is a surprisingly difficult concept to understand. David Hume famously noted that causality is a
concept that our science and philosophy cannot do without, but it is equally a concept that our science and philosophy
cannot describe. Since Hume, the problem of cause has not gone away, and sometimes seems to get even worse (e.g.,
quantum mechanics confusing previous notions of causality). Yet, ways of doing science that lessen our need to explicitly
use causality have become very effective (e.g., huge developments in statistics). Nevertheless, it still seems that the
concept of causality is at the core of explaining how the world works, across fields as diverse as physics, medicine, logistics,
the law, sociology, and history – and ordinary daily life – through all of which, explanations and predictions in terms of
cause and effect remain intuitively central.

Causality remains a thorny problem but, in recent decades, significant progress has occurred, particularly in work by or
inspired by Judea Pearl. This work incorporates many 20th century developments, including statistical methods – but with
a reemphasis on finding the why, or the cause, behind statistical correlations –, progress in understanding the logic,
semantics and metaphysics of conditionals and counterfactuals, developments based on insights from the likes of
philosopher Hans Reichenbach or biological statistician Sewall Wright into causal precedence and path analysis, and much
more. The result is a new toolkit to identify causes and build causal explanations. Yet even as we get better at identifying
causes, this raises new (or old) questions about causality, including metaphysical questions about the nature of causes
(and effects, events, objects, etc), but also questions about what we really use causality for (understanding the world as
it is or just to glean predictive control of specific outcomes), about how causality is used differently in different fields and
activities (is cause in physics the same as that in history?), and about how other crucial concepts relate to our concept of
cause (space and time seem to be related to causality, but so do concepts of legal and moral responsibility).

8.2.4

108

This course will introduce students to the mathematical formalism derived from Pearl’s work, based on directed acyclic
graphs and probability theory. Building upon previous work by Reichenbach and Wright, Pearl defines a "a calculus of
interventions" of "do-calculus" for talking about interventions and their relation to causation and counterfactuals. This
model has been applied in various areas ranging from econometrics to statistics, where acquiring knowledge about
causality is of great importance.

At the same time, the course will not forget some of the metaphysical and epistemological issues around cause, so that
students can better critically evaluate putative causal explanations in their full context. Abstractly, such issues involve
some of the same philosophical questions Hume already asked, but more practically, it is important to see how
metaphysical and epistemological debates surrounding the notion of cause affect scientific practice, and equally if not
more importantly, how scientific practice pushes the limits of theory. This course will look at various ways in which
empirical data can be transformed into explanations and theories, including the variance approach to causality
(characteristic of the positivistic quantitative paradigm), and the process theory of causality (associated with qualitative
methodology). Examples and case studies will be relevant for students of the social sciences but also students of the
natural/physical world as well.

Intended Learning Outcomes

Students acquire transferable and key skills in this module.

By the end of this module, the students will be able to

1. have a clear understanding of the history of causal thinking.
2. be able to form a critical understanding of the key debates and controversies surrounding the idea of

causality.
3. be able to recognize and apply probabilistic causal models.
4. be able to explain how understanding of causality differs among different disciplines.
5. be able demonstrate how theoretical thinking about causality has shaped scientific practices.

Indicative Literature

Paul, L. A. and Ned Hall. Causation: A User’s Guide. Oxford University Press 2013.

Pearl, Judea. Causality: Models, Reasoning and Inference. Cambridge University Press 2009

Pearl, Judea, Glymour Madelyn and Jewell, Nicolas. Causal Inference in Statistics: A Primer. Wiley 2016

llari, Phyllis McKay and Federica Russo. Causality: Philosophical Theory Meets Scientific Practice. Oxford University Press
2014.

Usability and Relationship to other Modules

Examination Type: Module Examination

Assessment: Written examination Duration/Length: 60 min
 Weight: 100 %

Scope: All intended learning outcomes of the module

Completion: To pass this module, the examination has to be passed with at least 45%.

109

 Linear Model and Matrices

Module Name

Linear Model and Matrices

Module Code

CTNS-NSK-05

Level (type)

Year 3
(New Skills)

CP

5

Module Components

Number Name Type CP

CTNS-05 Linear Model and Matrices Seminar (online) 5

Module
Coordinator

Prof. Dr. Marc-
Thorsten Hütt

Program Affiliation

• CONSTRUCTOR Track Area

Mandatory Status

Mandatory elective

Entry
Requirements

Pre-requisites

Logic

Causation &
Correlation

Co-requisites

☒ none

Knowledge, Abilities, or
Skills

Frequency

Annually

(Fall)

Forms of Learning and
Teaching

Online lecture (35h)

Private Study (90h)

Duration

1 Semester

Workload

125 hours

Recommendations for Preparation

Content and Educational Aims

There are no universal 'right skills'. But the notion of linear models and the avenue to matrices and their properties can
be useful in diverse disciplines to implement a quantitative, computational approach. Some of the most popular data and
systems analysis strategies are built upon this framework. Examples include principal component analysis (PCA), the
optimization techniques used in Operations Research (OR), the assessment of stable and unstable states in nonlinear
dynamical systems, as well as aspects of machine learning.

Here we introduce the toolbox of linear models and matrix-based methods embedded in a wide range of transdisciplinary
applications (part 1). We describe its foundation in linear algebra (part 2) and the range of tools and methods derived
from this conceptual framework (part 3). At the end of the course, we outline applications to graph theory and machine
learning (part 4). Matrices can be useful representations of networks and of system of linear equations. They are also the
core object of linear stability analysis, an approach used in nonlinear dynamics. Throughout the course, examples from
neuroscience, social sciences, medicine, biology, physics, chemistry, and other fields are used to illustrate these methods.

A strong emphasis of the course is on the sensible usage of linear approaches in a nonlinear world. We will critically reflect
the advantages as well as the disadvantages and limitations of this method. Guiding questions are: How appropriate is a
linear approximation of a nonlinear system? What do you really learn from PCA? How reliable are the optimal states
obtained via linear programming (LP) techniques?

This debate is embedded in a broader context: How does the choice of a mathematical technique confine your view on
the system at hand? How, on the other hand, does it increase your capabilities of analyzing the system (due to software
available for this technique, the ability to compare with findings from other fields built upon the same technique and the
volume of knowledge about this technique)?

8.2.5

110

In the end, students will have a clearer understanding of linear models and matrix approaches in their own discipline, but
they will also see the full transdisciplinarity of this topic. They will make better decisions in their choice of data analysis
methods and become mindful of the challenges when going from a linear to a nonlinear thinking.

Intended Learning Outcomes

Upon completion of this module, students will be able to

1. apply the concept of linear modeling in their own discipline
2. distinguish between linear and nonlinear interpretation strategies and understand the range of

applicability of linear models
3. make use of data analysis / data interpretation strategies from other disciplines, which are derived from

linear algebra
4. be aware of the ties that linear models have to machine learning and network theory

Note that these four ILOs can be loosely associated with the four parts of the course indicated above

Indicative Literature

Part 1:

material from Linear Algebra for Everyone, Gilbert Strang, Wellesley-Cambridge Press, 2020

Part 2:

material from Introduction to Linear Algebra (5th Edition), Gilbert Strang, Cambridge University Press, 2021

Part 3:

Mainzer, Klaus. "Introduction: from linear to nonlinear thinking." Thinking in Complexity: The Computational Dynamics
of Matter, Mind and Mankind (2007): 1-16.

material from Mathematics of Big Data: Spreadsheets, Databases, Matrices, and Graphs, Jeremy Kepner, Hayden
Jananthan, The MIT Press, 2018

material from Introduction to Linear Algebra (5th Edition), Gilbert Strang, Cambridge University Press, 2021

Part 4:

material from Linear Algebra and Learning from Data, Gilbert Strang, Wellesley-Cambridge Press, 2019

Usability and Relationship to other Modules

Examination Type: Module Examination

Assessment: Written examination Duration/Length: 120 min
 Weight: 100 %

Scope: All intended learning outcomes of the module

Completion: To pass this module, the examination has to be passed with at least 45%.

111

 Complex Problem Solving

Module Name

Complex Problem Solving

Module Code

CTNS-NSK-06

Level (type)

Year 3
(New Skills)

CP

5

Module Components

Number Name Type CP

CTNS-06 Complex Problem Solving Lecture (online) 5

Module
Coordinator

Prof. Dr. Marco
Verweij

Program Affiliation

• CONSTRUCTOR Track Area

Mandatory Status

Mandatory elective

Entry
Requirements

Pre-requisites
☒ Logic
☒ Causation and
Correlation

Co-requisites

☒ none

Knowledge, Abilities, or
Skills
Being able to read primary
academic literature
Willingness to engage in
teamwork

Frequency

Annually

(Fall)

Forms of Learning and
Teaching

Online Lectures (35h)

Private Study (90h)

Duration

1 semester

Workload

125 hours

Recommendations for Preparation

Please read: Camillus, J. (2008). Strategy as a wicked problem. Harvard Business Review 86: 99-106; Rogers, P. J. (2008).
Using programme theory to evaluate complicated and complex aspects of interventions. Evaluation, 14, 29–48.

Content and Educational Aims

Complex problems are, by definition, non-linear and/or emergent. Some fifty years ago, scholars such as Herbert Simon
began to argue that societies around the world had developed an impressive array of tools with which to solve simple and
even complicated problems, but still needed to develop methods with which to address the rapidly increasing number of
complex issues. Since then, a variety of such methods has emerged. These include ‘serious games’ developed in computer
science, ‘multisector systems analysis’ applied in civil and environmental engineering, ‘robust decision-making’ proposed
by the RAND Corporation, ‘design thinking’ developed in engineering and business studies, ‘structured problem solving’
used by McKinsey & Co., ‘real-time technology assessment’ advocated in science and technology studies, and ‘deliberative
decision-making’ emanating from political science.

In this course, students first learn to distinguish between simple, complicated and complex problems. They also become
familiar with the ways in which a particular issue can sometimes shift from one category into another. In addition, the
participants learn to apply several tools for resolving complex problems. Finally, the students are introduced to the various
ways in which natural and social scientists can help stakeholders resolve complex problems. Throughout the course
examples and applications will be used. When possible, guest lectures will be offered by experts on a particular tool for
tackling complex issues. For the written, take-home exam, students will have to select a specific complex problem, analyse
it and come up with a recommendation – in addition to answering several questions about the material learned.

8.2.6

112

Intended Learning Outcomes

Upon completion of this module, students will be able to:

1. Identify a complex problem;
2. Develop an acceptable recommendation for resolving complex problems.
3. Understand the roles that natural and social scientists can play in helping stakeholders resolve complex

problems;

Indicative Literature

Chia, A. (2019). Distilling the essence of the McKinsey way: The problem-solving cycle. Management Teaching Review
4(4): 350-377.

Den Haan, J., van der Voort, M.C., Baart, F., Berends, K.D., van den Berg, M.C., Straatsma, M.W., Geenen, A.J.P., &
Hulscher, S.J.M.H. (2020). The virtual river game: Gaming using models to collaboratively explore river management
complexity, Environmental Modelling & Software 134, 104855,

Folke, C., Carpenter, S., Elmqvist, T., Gunderson, L., Holling, C.S., & Walker, B. (2002). Resilience and sustainable
development: Building adaptive capacity in a world of transformations. AMBIO: A Journal of the Human Environment
31(5): 437-440.

Ostrom, E. (2010). Beyond markets and states: Polycentric governance of complex economic systems. American
Economic Review 100(3): 641-72.

Pielke, R. Jr. (2007). The honest broker: Making sense of science in policy and politics. Cambridge: Cambridge University
Press.

Project Management Institute (2021). A guide to the project management body of knowledge (PMBOK® guide).

Schon, D. A., & Rein, M. (1994). Frame reflection: Toward the resolution of intractable policy controversies. New York:
Basic Books.

Simon, H. A. (1973). The structure of ill structured problems. Artificial Intelligence 4(3-4): 181-201.

Verweij, M. & Thompson, M. (Eds.) (2006). Clumsy solutions for a complex world. London: Palgrave Macmillan.

Usability and Relationship to other Modules

Examination Type: Module Examination

Assessment Type: Written examination Duration: 120 min
 Weight: 100%

Scope: All intended learning outcomes of the module.

Completion: To pass this module, the examination has to be passed with at least 45%.

113

 Argumentation, Data Visualization and Communication (perspective I)

Module Name

Argumentation, Data Visualization and Communication (perspective
I)

Module Code
CTNS-NSK-07

Level (type)
Year 3
(New Skills)

CP
5

Module Components

Number Name Type CP

CTNS-07 Argumentation, Data Visualization and Communication Lecture (online) 5

Module
Coordinator

Prof. Dr. Jules
Coleman,
Prof. Dr. Arvid
Kappas

Program Affiliation

• CONSTRUCTORr Track Area

Mandatory Status

Mandatory elective for all UG
students (one perspective
must be chosen)

Entry
Requirements

Pre-requisites

☒ Logic
☒ Causation &
Correlation

Co-requisites

☒ none

Knowledge, Abilities, or
Skills

Frequency

Annually
(Fall)

Forms of Learning and
Teaching

Online Lectures (35h)
Private Study (90h)

Duration

1 semester

Workload

125h

Recommendations for Preparation

Content and Educational aim

One must be careful not to confuse argumentation with being argumentative. The latter is an unattractive personal
attribute, whereas the former is a requirement of publicly holding a belief, asserting the truth of a proposition, the
plausibility of a hypothesis, or a judgment of the value of a person or an asset. It is an essential component of public
discourse. Public discourse is governed by norms and one of those norms is that those who assert the truth of a
proposition or the validity of an argument or the responsibility of another for wrongdoing open themselves up to good
faith requests to defend their claims. In its most general meaning, argumentation is the requirement that one offer
evidence in support of the claims they make, as well as in defense of the judgments and assessments they reach. There
are different modalities of argumentation associated with different contexts and disciplines. Legal arguments have a
structure of their own as do assessments of medical conditions and moral character. In each case, there are differences
in the kind of evidence that is thought relevant and, more importantly, in the standards of assessment for whether a case
has been successfully made. Different modalities of argumentation require can call for different modes of reasoning. We
not only offer reasons in defense of or in support of beliefs we have, judgments we make and hypotheses we offer, but
we reason from evidence we collect to conclusions that are warranted by them.

Reasoning can be informal and sometimes even appear unstructured. When we recognize some reasoning as
unstructured yet appropriate what we usually have in mind is that it is not linear. Most reasoning we are familiar with is
linear in character. From A we infer B, and from A and B we infer C, which all together support our commitment to D.
The same form of reasoning applies whether the evidence for A, B or C is direct or circumstantial. What changes in these
cases is perhaps the weight we give to the evidence and thus the confidence we have in drawing inferences from it.

Especially in cases where reasoning can be supported by quantitative data, wherever quantitative data can be obtained
either directly or by linear or nonlinear models, the visualization of the corresponding data can become key in both,
reasoning and argumentation. A graphical representation can reduce the complexity of argumentation and is considered

8.2.7

114

a must in effective scientific communication. Consequently, the course will also focus on smart and compelling ways for
data visualization - in ways that go beyond what is typically taught in statistics or mathematics lectures. These tools are
constantly developing, as a reflection of new software and changes in state of the presentation art. Which graph or bar
chart to use best for which data, the use of colors to underline messages and arguments, but also the pitfalls when
presenting data in a poor or even misleading manner. This will also help in readily identifying intentional mis-
representation of data by others, the simplest to recognize being truncating the ordinate of a graph in order to exaggerate
trends. This frequently leads to false arguments, which can then be readily countered.

There are other modalities of reasoning that are not linear however. Instead they are coherentist. We argue for the
plausibility of a claim sometimes by showing that it fits in with a set of other claims for which we have independent
support. The fit is itself the reason that is supposed to provide confidence or grounds for believing the contested claim.

Other times, the nature of reasoning involves establishing not just the fit but the mutual support individual items in the
evidentiary set provide for one another. This is the familiar idea of a web of interconnected, mutually supportive beliefs.
In some cases, the support is in all instances strong; in others it is uniformly weak, but the set is very large; in other cases,
the support provided each bit of evidence for the other is mixed: sometimes strong, sometimes weak, and so on.

There are three fundamental ideas that we want to extract from this segment of the course. These are (1) that
argumentation is itself a requirement of being a researcher who claims to have made findings of one sort or another; (2)
that there are different forms of appropriate argumentation for different domains and circumstances; and (3) that there
are different forms of reasoning on behalf of various claims or from various bits of evidence to conclusions: whether those
conclusions are value judgments, political beliefs, or scientific conclusions. Our goal is to familiarize you with all three of
these deep ideas and to help you gain facility with each.

Intended Learning Outcomes

Students acquire transferable and key skills in this module.

By the end of this module, the students will be able to

1. distinguish among different modalities of argument, e.g. legal arguments, vs. scientific ones.

2. construct arguments using tools of data visualization.

3. communicate conclusions and arguments concisely, clearly and convincingly.

Indicative Literature

• Tufte, E.R. (1985). The visual display of quantitative information. The Journal for Healthcare Quality (JHQ),
7(3), 15.

• Cairo, A (2012). The Functional Art: An introduction to information graphics and visualization. New Ridders.

• Knaflic, C.N. (2015). Storytelling with data: A data visualization guide for business professionals. John Wiley &
Sons.

Usability and Relationship to other Modules

Examination Type: Module Examination

Assessment Type: Written Examination Duration/Length: 120 (min)
 Weight: 100%
Scope: All intended learning outcomes of the module

Completion: To pass this module, the examination has to be passed with at least 45%.

115

 Argumentation, Data Visualization and Communication (perspective II)

Module Name

Argumentation, Data Visualization and Communication (perspective
II)

Module Code
CTNS-NSK-08

Level (type)
Year 3
(New Skills)

CP
5

Module Components

Number Name Type CP

CTNS-08 Argumentation, Data Visualization and Communication Lecture (online) 5

Module
Coordinator

Prof. Dr. Jules
Coleman,
Prof. Dr. Arvid
Kappas

Program Affiliation

• CONSTRUCTOR Track Area

Mandatory Status

Mandatory elective for all
UG students (one
perspective must be chosen)

Entry
Requirements

Pre-requisites

☒ Logic

☒ Causation &
Correlation

Co-requisites

☒ none

Knowledge, Abilities, or Skills

ability and openness to
engage in interactions
media literacy, critical
thinking and a proficient
handling of data sources
own research in academic
literature

Frequency

Annually
(Spring)

Forms of Learning and
Teaching

• Online Lecture (35

hours)
• Tutorial of the lecture

(10 hours)
• Private study for the

lecture (80 hours)

Duration

1 semester

Workload

125 hours

Recommendations for Preparation

Content and Educational Aims
Humans are a social species and interaction is crucial throughout the entire life span. While much of human
communication involves language, there is a complex multichannel system of nonverbal communication that enriches
linguistic content, provides context, and is also involved in structuring dynamic interaction. Interactants achieve goals by
encoding information that is interpreted in the light of current context in transactions with others. This complexity implies
also that there are frequent misunderstandings as a sender’s intention is not fulfilled. Students in this course will learn to
understand the structure of communication processes in a variety of formal and informal contexts. They will learn what
constitutes challenges to achieving successful communication and to how to communicate effectively, taking the context
and specific requirements for a target audience into consideration. These aspects will be discussed also in the scientific
context, as well as business, and special cases, such as legal context – particularly with view to argumentation theory.

Communication is a truly transdisciplinary concept that involves knowledge from diverse fields such as biology,
psychology, neuroscience, linguistics, sociology, philosophy, communication and information science. Students will learn
what these different disciplines contribute to an understanding of communication and how theories from these fields can
be applied in the real world. In the context of scientific communication, there will also be a focus on visual communication
of data in different disciplines. Good practice examples will be contrasted with typical errors to facilitate successful
communication also with view to the Bachelor’s thesis.

8.2.8

116

Intended Learning Outcomes

Upon completion of this module, students will be able to

1. analyze communication processes in formal and informal contexts.
2. identify challenges and failures in communication.
3. design communications to achieve specified goals to specific target groups.
4. understand the principles of argumentation theory.
5. use data visualization in scientific communications.

Indicative Literature

• Joseph A. DeVito: The Interpersonal Communication Book (Global edition, 16th edition), 2022
• Steven L. Franconeri, Lace M. Padilla, Priti Shah, Jeffrey M. Zacks, and Jessica Hullman: The Science of Visual

Data Communication: What Works Psychological Science in the Public Interest, 22(3), 110–161, 2022
• Douglas Walton: Argumentation Theory – A Very Short Introduction. In: Simari, G., Rahwan, I. (eds)

Argumentation in Artificial Intelligence. Springer, Boston, MA, 2009

Examination Type: Module Examination

Assessment Type: Digital submission of asynchronous presentation, including reflection

 Duration/Length: Asynchronous/Digital submission
 Weight: 100%
Scope: All intended learning outcomes of the module

Module achievement: Asynchronous presentation on a topic relating to the major of the student, including a reflection
including concept outlining the rationale for how arguments are selected and presented based on a particular target
group for a particular purpose. The presentation shall be multimedial and include the presentation of data

The module achievement ensures sufficient knowledge about key concepts of effective communication including a
reflection on the presentation itself

Completion: To pass this module, the examination has to be passed with at least 45%.

117

 Agency, Leadership, and Accountability

Module Name
Agency, Leadership, and Accountability

Module Code
CTNS-NSK-09

Level (type)
Year 3
(New Skills)

CP
5

Module Components

Number Name Type CP

CTNS-09 Agency, Leadership, and Accountability Lecture (online) 5

Module
Coordinator

Prof. Dr. Jules
Coleman

Program Affiliation

• CONSTRUCTOR Track Area

Mandatory Status

Mandatory elective

Entry
Requirements

Pre-requisites

☒ none

Co-requisites

☒ none

Knowledge, Abilities, or
Skills

Frequency

Annually
(Spring)

Forms of Learning and
Teaching

Online Lectures (35h)
Private Study (90h)

Duration

Workload

125 hours

Recommendations for Preparation

Content and Educational Aims

Each of us is judged by the actions we undertake and held to account for the consequences of them. Sometimes we may
be lucky and our bad acts don't have harmful effects on others. Other times we may be unlucky and reasonable decisions
can lead to unexpected or unforeseen adverse consequences for others. We are therefore held accountable both for
choices and for outcomes. In either case, accountability expresses the judgment that we bear responsibility for what we
do and what happens as a result. But our responsibility and our accountability in these cases is closely connected to the
idea that we have agency.

Agency presumes that we are the source of the choices we make and the actions that result from those choices. For some,
this may entail the idea that we have free will. But there is scientific world view that holds that all actions are determined
by the causes that explain them, which is the idea that if we knew the causes of your decisions in advance, we would know
the decision you would make even before you made it. If that is so, how can your choice be free? And if it is not free,
how can you be responsible for it? And if you cannot be responsible, how can we justifiably hold you to account for it?

These questions express the centuries old questions about the relationship between free will and a determinist world
view: for some, the conflict between a scientific world view and a moral world view.

But we do not always act as individuals. In society we organize ourselves into groups: e.g. tightly organized social groups,
loosely organized market economies, political societies, companies, and more. These groups have structure. Some
individuals are given the responsibility of leading the group and of exercising authority. But one can exercise authority
over others in a group merely by giving orders and threatening punishment for non-compliance.

Exercising authority is not the same thing as being a leader? For one can lead by example or by encouraging others to
exercise personal judgment and authority. What then is the essence of leadership?

The module has several educational goals. The first is for students to understand the difference between actions that we
undertake for which we can reasonably held accountable and things that we do but which we are not responsible for. For
example, a twitch is an example of the latter, but so too may be a car accident we cause as a result of a heart attack we

8.2.9

118

had no way of anticipating or controlling. This suggests the importance of control to responsibility. At the heart of
personal agency is the idea of control. The second goal is for students to understand what having control means. Some
think that the scientific view is that the world is deterministic, and if it is then we cannot have any personal control over
what happens, including what we do. Others think that the quantum scientific view entails a degree of indeterminacy and
that free will and control are possible, but only in the sense of being unpredictable or random. But then random outcomes
are not ones we control either. So, we will devote most attention to trying to understand the relationships between
control, causation and predictability.
But we do not only exercise agency in isolation. Sometimes we act as part of groups and organizations. The law often
recognizes ways in which groups and organizations can have rights, but is there a way in which we can understand how
groups have responsibility for outcomes that they should be accountable for. We need to figure out then whether there
is a notion of group agency that does not simply boil down to the sum of individual actions. We will explore the ways in
which individual actions lead to collective agency.
Finally we will explore the ways in which occupying a leadership role can make one accountable for the actions of others
over which one has authority.

Intended Learning Outcomes
Students acquire transferable and key skills in this module.

By the end of this module, the students will be able to

1. understand and reflect how the social and moral world views that rely on agency and responsibility are
compatible, if they are, with current scientific world views.

2. understand how science is an economic sector, populated by large powerful organizations that set norms
and fund research agendas.

3. identify the difference between being a leader of others or of a group – whether a research group or a lab
or a company – and being in charge of the group.

4. learn to be a leader of others and groups. Understand that when one graduates one will enter not just a
field of work but a heavily structured set of institutions and that one’s agency and responsibility for what
happens, what work gets done, its quality and value, will be affected accordingly.

Indicative Literature
Hull, David L. "Science as a Process." Science as a Process. University of Chicago Press, 2010;
Feinberg, Joel. "Doing & deserving; essays in the theory of responsibility." (1970).

Usability and Relationship to other Modules

Examination Type: Module Examination

Assessment Type: Written examination Duration/Length: 120 min
 Weight: 100%
Scope: All intended learning outcomes of the module

Completion: To pass this module, the examination has to be passed with at least 45%.

119

 Community Impact Project

Module Name Module Code Level (type) CP
Community Impact Project CTNC-CIP-10 Year 3

(New Skills)
5

Module Components

Number Name Type CP
CTNC-10 Community Impact Project Project 5

Module Coordinator

CIP Faculty Coordinator

Program Affiliation

• CONSTRUCTOR Track Area

Mandatory Status

Mandatory elective

Entry Requirements

Pre-requisites

☒ at least 15 CP from
CORE modules in the
major

Co-requisites

☒ None

Knowledge, Abilities, or
Skills

Basic knowledge of the
main concepts and
methodological
instruments of the
respective disciplines

Frequency

Annually
(Fall / Spring)

Forms of Learning and
Teaching

• Introductory,

accompanying, and
final events: 10 hours

• Self-organized
teamwork and/or
practical work in the
community: 115
hours

Duration

1 semester

Workload

125 hours

Recommendations for Preparation

Develop or join a community impact project before the 5th or 6th semester based on the introductory events during the
4th semester by using the database of projects, communicating with fellow students and faculty, and finding potential
companies, organizations, or communities to target.

Content and Educational Aims

CIPs are self-organized, major-related, and problem-centered applications of students’ acquired knowledge and skills.
These activities will ideally be connected to their majors so that they will challenge the students’ sense of practical
relevance and social responsibility within the field of their studies. Projects will tackle real issues in their direct and/or
broader social environment. These projects ideally connect the campus community to other communities, companies, or
organizations in a mutually beneficial way.
Students are encouraged to create their own projects and find partners (e.g., companies, schools, NGOs), but will get help
from the CIP faculty coordinator team and faculty mentors to do so. They can join and collaborate in interdisciplinary
groups that attack a given issue from different disciplinary perspectives.
Student activities are self-organized but can draw on the support and guidance of both faculty and the CIP faculty
coordinator team.

Intended Learning Outcomes

The Community Impact Project is designed to convey the required personal and social competencies for enabling students
to finish their studies at Constructor as socially conscious and responsible graduates (part of the Constructor mission) and
to convey social and personal abilities to the students, including a practical awareness of the societal context and
relevance of their academic discipline.

By the end of this project, students will be able to

1. understand the real-life issues of communities, organizations, and industries and relate them to concepts in
their own discipline;

2. enhance problem-solving skills and develop critical faculty, create solutions to problems, and communicate
these solutions appropriately to their audience;

8.2.10

120

3. apply media and communication skills in diverse and non-peer social contexts;
4. develop an awareness of the societal relevance of their own scientific actions and a sense of social

responsibility for their social surroundings;
5. reflect on their own behavior critically in relation to social expectations and consequences;
6. work in a team and deal with diversity, develop cooperation and conflict skills, and strengthen their empathy

and tolerance for ambiguity.

Indicative Literature

Usability and Relationship to other Modules

• Students who have accomplished their CIP (6th semester) are encouraged to support their fellow students
during the development phase of the next year’s projects (4th semester).

Examination Type: Module Examination

Project, not numerically graded (pass/fail)
Scope: All intended learning outcomes of the module

121

8.3 Language and Humanities Modules

 Languages

The descriptions of the language modules are provided in a separate document, the “Language Module
Handbook” that can be accessed from the Constructor University’s Language & Community Center
internet sites (https://constructor.university/student-life/language-community-center/learning-
languages).

 Humanities

8.3.2.1 Introduction to Philosophical Ethics

Module Name

Introduction to Philosophical Ethics

Module Code
CTHU-HUM-001

Level (type)
Year 1

CP
2.5

Module Components

Number Name Type CP
CTHU-HUM-001 Introduction to Philosophical Ethics Lecture (online) 2.5

Module
Coordinator

Dr. Eoin Ryan

Program Affiliation

• CONSTRUCTOR Track Area

Mandatory Status

Mandatory elective

Entry
Requirements

Pre-requisites

☒ none

Co-requisites

☒ none

Knowledge, Abilities, or
Skills

Frequency

Annually
(Fall or Spring)

Forms of Learning and
Teaching

Online lectures (17.5 h)
Private Study (45h)

Duration

1 semester

Workload

62.5 hours

Recommendations for Preparation

Content and Educational Aims

The nature of morality – how to lead a life that is good for yourself, and how to be good towards others – has been a
central debate in philosophy since the time of Socrates, and it is a topic that continues to be vigorously discussed. This
course will introduce students to some of the key aspects of philosophical ethics, including leading normative theories of
ethics (e.g. consequentialism or utilitarianism, deontology, virtue ethics, natural law ethics, egoism) as well as some
important questions from metaethics (are useful and generalizable ethical claims even possible; what do ethical speech
and ethical judgements actually do or explain) and moral psychology (how do abstract ethical principles do when realized
by human psychologies). The course will describe ideas that are key factors in ethics (free will, happiness, responsibility,
good, evil, religion, rights) and indicate various routes to progress in understanding ethics, as well as some of their
difficulties.

8.3.1

8.3.2

https://constructor.university/student-life/language-community-center/learning-languages
https://constructor.university/student-life/language-community-center/learning-languages

122

Intended Learning Outcomes

Upon completion of this module, students will be able to

1. describe normative ethical theories such as consequentialism, deontology and virtue ethics.
2. discuss some metaethical concerns.
3. dnalyze ethical language.
4. highlight complexities and contradictions in typical ethical commitments.
5. indicate common parameters for ethical discussions at individual and social levels.
6. analyze notions such as objectivity, subjectivity, universality, pluralism, value.

Indicative Literature

Simon Blackburn, Being Good (2009)

Russ Shafer-Landay, A Concise Introduction to Ethics (2019)

Mark van Roojen, Metaethicas: A Contemporary Introduction (2015)

Usability and Relationship to other Modules

Examination Type: Module Examination

Assessment Type: Written Examination Duration/Length: 60 min
 Weight: 100%
Scope: All intended learning outcomes of the module.

Completion: To pass this module, the examination has to be passed with at least 45%.

123

8.3.2.2 Introduction to the Philosophy of Science

Module Name

Introduction to the Philosophy of Science

Module Code
CTHU-HUM-002

Level (type)
Year 1

CP
2.5

Module Components

Number Name Type CP

CTHU-HUM-002 Introduction to the Philosophy of Science Lecture (online) 2.5

Module
Coordinator

Dr. Eoin Ryan

Program Affiliation

• CONSTRUCTOR Track Area

Mandatory Status

Mandatory elective

Entry
Requirements

Pre-requisites

☒ none

Co-requisites

☒ none

Knowledge, Abilities, or
Skills

Frequency

Annually
(Fall or Spring)

Forms of Learning and
Teaching

Online lectures (17.5h)
Private Study (45h)

Duration

1 semester

Workload

62.5 hours

Recommendations for Preparation

Content and Educational Aims

This humanities module will introduce students to some of the central ideas in philosophy of science. Topics will include
distinguishing science from pseudo-science, types of inference and the problem of induction, the pros and cons of realism
and anti-realism, the role of explanation, the nature of scientific change, the difference between natural and social
sciences, scientism and the values of science, as well as some examples from philosophy of the special sciences (e.g.,
physics, biology).
The course aims to give students an understanding of how science produces knowledge, and some of the various contexts
and issues which mean this process is never entirely transparent, neutral, or unproblematic. Students will gain a critical
understanding of science as a human practice and technology; this will enable them both to better understand the
importance and success of science, but also how to properly critique science when appropriate.

Intended Learning Outcomes

Upon completion of this module, students will be able to

1. understand key ideas from the philosophy of science.
2. discuss different types of inference and rational processes.
3. describe differences between how the natural sciences, social sciences and humanities discover

knowledge.
4. identify ways in which science can be more and less value-laden.
5. illustrate some important conceptual leaps in the history of science.

Indicative Literature

Peter Godfrey-Smith, Theory and Reality (2021)

James Ladyman, Understanding Philosophy of Science (2002)

Paul Song, Philosophy of Science: Perspectives from Scientists (2022)

124

Usability and Relationship to other Modules

Examination Type: Module Examination

Assessment Type: Written Examination Duration/Length: 60 min
 Weight: 100%
Scope: All intended learning outcomes of the module.

Completion: To pass this module, the examination has to be passed with at least 45%.

125

8.3.2.3 Introduction to Visual Culture

Module Name
Introduction to Visual Culture

Module Code
CTHU-HUM-003

Level (type)
Year 1

CP
2.5

Module Components

Number Name Type CP

CTHU-HUM-003 Introduction to Visual Culture Lecture (online) 2.5

Module
Coordinator

Dr. Irina Chiaburu

Program Affiliation

• CONSTRUCTOR Track Area

Mandatory Status

Mandatory elective

Entry
Requirements

Pre-requisites

☒ none

Co-requisites

☒ none

Knowledge, Abilities, or
Skills

Frequency

Annually
(Spring/Fall)

Forms of Learning and
Teaching

Online lectures (17.5 h)
Private Study (45h)

Duration

1 semester

Workload

62.5 h

Recommendations for Preparation

Content and Educational Aims

Of the five senses, the sense of sight has for a long time occupied the central position in human cultures. As John Berger
has suggested this could be because we can see and recognize the world around us before we learn how to speak. Images
have been with us since the earliest days of the human history. In fact, the earliest records of human history are images
found on cave walls across the world. We use images to capture abstract ideas, to catalogue and organize the world, to
represent the world, to capture specific moments, to trace time and change, to tell stories, to express feelings, to better
understand, to provide evidence and more. At the same time, images exert their power on us, seducing us into believing
in their ‘innocence’, that is into forgetting that as representations they are also interpretations, i.e., a particular version
of the world.

The purpose of this course is to explore multiple ways in which images and the visual in general mediate and structure
human experiences and practices from more specialized discourses, e.g., scientific discourses, to more informal and
personal day-to-day practices, such as self-fashioning in cyberspace. We will look at how social and historical contexts
affect how we see, as well as what is visible and what is not. We will explore the centrality of the visual to the intellectual
activity, from early genres of scientific drawing to visualizations of big data. We will examine whether one can speak of
visual culture of protest, look at the relationship between looking and subjectivity and, most importantly, ponder the
relationship between the visual and the real.

Intended Learning Outcomes

Upon completion of this module, students will be able to

1. understand a range of key concepts pertaining to visual culture, art theory and cultural analysis
2. understand the role visuality plays in development and maintenance of political, social, and intellectual discourses
3. think critically about images and their contexts
4. reflect critically on the connection between seeing and knowing

Indicative Literature

Berger, J., Blomberg, S., Fox, C., Dibb, M., & Hollis, R. (1973). Ways of seeing.
Foucault, M. (2002). The order of things: an archaeology of the human sciences (Ser. Routledge classics). Routledge.

126

Hunt, L. (2004). Politics, culture, and class in the French revolution: twentieth anniversary edition, with a new preface
(Ser. Studies on the history of society and culture, 1). University of California Press.
Miller, V. (2020). Understanding digital culture (Second). SAGE.
Thomas, N. (1994). Colonialism's culture: anthropology, travel and government. Polity Press.

Usability and Relationship to other Modules

Examination Type: Module Examination

Assessment: Written examination Duration/Length: 60 min.
 Weight: 100%
Scope: all intended learning outcomes

Completion: To pass this module, the examination has to be passed with at least 45%.

127

Figure 4: Intended Learning Outcomes Assessment Matrix

9 Appendix

9.1 Intended Learning Outcomes Assessment-Matrix

Pr
og

ra
m

m
in

g
in

 C
 a

nd
 C

++

An
al

ys
is

M
at

he
m

at
ica

l F
ou

nd
at

io
ns

 o
f C

om
pu

te
r S

cie
nc

e

Co
re

 A
lg

or
ith

m
s a

nd
 D

at
a

St
ru

ct
ur

es

De
ve

lo
pm

en
t i

n
JV

M
 La

ng
ua

ge
s

Di
gi

ta
l S

ys
te

m
s a

nd
 C

om
pu

te
r A

rc
hi

te
ct

ur
e

Lin
ea

r A
lg

eb
ra

O
pe

ra
tin

g
Sy

st
em

s

So
ft

w
ar

e
En

gi
ne

er
in

g
an

d
De

sig
n

Ad
va

nc
ed

 A
lg

or
ith

m
s a

nd
 D

at
a

St
ru

ct
ur

es

M
ac

hi
ne

 Le
ar

ni
ng

Sc
ie

nt
ifi

c P
ro

gr
am

m
in

g
w

ith
 P

yt
ho

n

Co
m

pu
te

r N
et

w
or

ks

Fu
nc

tio
na

l P
ro

gr
am

m
in

g

Sc
ie

nt
ifi

c D
at

a
An

al
ys

is

Da
ta

ba
se

 F
un

da
m

en
ta

ls

Di
sc

re
te

 M
at

he
m

at
ics

Ar
tif

ici
al

 In
te

llig
en

ce

Sp
ec

ia
liz

at
io

n
m

od
ul

es

Ba
ch

el
or

 T
he

sis

CT
 M

et
ho

ds

CT
 N

ew
 S

ki
lls

CT
 La

ng
ua

ge
 a

nd
 H

um
an

iti
es

Semester 1 1 1 2 2 2 2 3 4 3 4 1 3 3 3 4 4 4 5-6 6 1-4 3-6 1-2
Mandatory/ mandatory elective m me m m m me me m m m m me me me me me me me me m me me me
Credits 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 5.0 5.0 7.5 5.0 5.0 5.0 5.0 5.0 5.0 15.0 15 20 20 5.0

Program Learning Outcomes A E P S
work professionally in the field of software, Data and
Technology and enter graduate programs related to these
fields

x x

apply fundamental concepts of mathematics, statistics, and
computer science while solving data-related problems; x x x x x x x x x x x x x x x x

analyze at multiple levels of abstraction and use appropriate
mathematical and computational methods to model and
analyze real-world problems;

x x

develop, analyze and implement algorithms using modern
software engineering methods and programming languages;

x x x x x x x x x x x x x x

understand the characteristics of a range of computing
platforms and their advantages and limitations;

x x x x x x x x

choose from multiple programming paradigms, languages and
algorithms to solve a given problem adequately; x x x x x x x x x x x x x

apply the necessary mathematical methods, such as linear
algebra, analysis, calculus, and discrete mathematics; x x x x x x x x x x x x

recognize the context in which data science and software
systems operate, including interactions with people and the
physical world;

x x x x x x x x x x x x x x x x x x

describe the state of published knowledge in the field of
software, Data and Technology and in a chosen specialization
(Machine Learning, Software Development, Programming
Languages);

x x x x x x x x x x x x x x x x x

analyze and model real-life scenarios in organizations and
industries using contemporary techniques of data science and
software development, also taking methods and insights of
other disciplines into account;

x x x x x x x x x x x x x x x x x x x x

appropriately communicate solutions of problems in
software, Data and Technology in both spoken and written
form to specialists and non-specialists;

x x x x x x x x x

draw scientifically founded conclusions that consider social,
professional, scientific, and ethical aspects; x

work effectively in a diverse team and take responsibility in a
team; x x x x x x x x x x x

take responsibility for their own learning, personal and
professional development and role in society, reflecting on
their practice and evaluating critical feedback;

x x x x

adhere to and defend ethical, scientific, and professional
standards; x x x x x x x

Assessment Type
Written examination x x x x x x x x x x x x x x x x x x x
Term paper
Essay x x
Project report
Poster presentation
Laboratory report
Program Code x x x x x x x x x
Oral examination
Presentation x x
Practical Assessments
Project Assessments x
Portfolio Assessments x x
Bachelor Thesis x
Module achievements x x x x x x

Software, Data and Technology BSc

Competencies*

*Competencies: A-scientific/academic proficiency; E-competence for qualified employment; P-development of personality; S-competence for engagement in society

1 1 1 1 1 1

	1 Program Overview
	1.1 Concept
	1.1.1 The Constructor University Educational Concept
	1.1.2 Program Concept

	1.2 Specific Advantages of Software, Data and Technology at Constructor University
	1.3 Program-Specific Educational Aims
	1.3.1 Qualification Aims
	1.3.2 Intended Learning Outcomes

	1.4 Career Options and Support
	1.5 Admission Requirements
	1.6 More information and contacts

	2 The Curricular Structure
	2.1 General
	2.2 The Constructor University 4C Model
	2.2.1 Year 1 – CHOICE
	2.2.2 Year 2 – CORE
	2.2.2.1 Minor Option

	2.2.3 Year 3 – CAREER
	2.2.3.1 Internship / Start-up and Career Skills Module
	2.2.3.2 Specialization Modules
	2.2.3.3 Study Abroad
	2.2.3.4 Bachelor Thesis/Seminar Module

	2.3 The CONSTRUCTOR Track
	2.3.1 Methods Modules
	2.3.2 New Skills Modules
	2.3.3 German Language and Humanities Modules

	3 Software Development as a minor
	3.1 Qualification Aims
	3.2 Intended Learning Outcomes
	3.3 Module Requirements
	3.4 Degree

	4 Software, Data and Technology Undergraduate Program Regulations
	4.1 Scope of these Regulations
	4.2 Degree
	4.3 Graduation Requirements

	5 Schematic Study Plan for Software, Data and Technology
	6 Study and Examination Plan
	7 Software, Data and Technology Modules
	7.1 Programming in C and C++
	7.2 Mathematical Foundations of Computer Science
	7.3 Analysis
	7.4 Scientific Programming with Python
	7.5 Linear Algebra
	7.6 Digital Systems and Computer Architecture
	7.7 Development in JVM Languages
	7.8 Core Algorithms and Data Structures
	7.9 Operating Systems
	7.10 Functional Programming
	7.11 Scientific Data Analysis
	7.12 Advanced Algorithms and Data Structures
	7.13 Machine Learning
	7.14 Discrete Mathematics
	7.15 Artificial Intelligence
	7.16 Software Engineering and Design
	7.17 Database Fundamentals
	7.18 Deep Learning
	7.19 Stochastic Modeling and Financial Mathematics
	7.20 Optimization Methods
	7.21 Natural Language Processing
	7.22 Distributed Algorithms
	7.23 Computer Networks
	7.24 Databases Internals
	7.25 Integrated Development and IT Operations
	7.26 Parallel Programming
	7.27 Formal Languages and Parsers
	7.28 Compilers
	7.29 Semantics of Programming Languages
	7.30 Internship / Startup and Career Skills
	7.31 Bachelor Thesis and Seminar in SDT

	8 Constructor Track Modules
	8.1 Methods
	8.1.1 Elements of Linear Algebra
	8.1.2 Elements of Calculus
	8.1.3 Matrix Algebra and Advanced Calculus I
	8.1.4 Matrix Algebra and Advanced Calculus II
	8.1.5 Probability and Random Processes
	8.1.6 Statistics and Data Analytics

	8.2 New Skills
	8.2.1 Logic (perspective I)
	8.2.2 Logic (perspective II)
	8.2.3 Causation and Correlation (perspective I)
	8.2.4 Causation and Correlation (perspective II)
	8.2.5 Linear Model and Matrices
	8.2.6 Complex Problem Solving
	8.2.7 Argumentation, Data Visualization and Communication (perspective I)
	8.2.8 Argumentation, Data Visualization and Communication (perspective II)
	8.2.9 Agency, Leadership, and Accountability
	8.2.10 Community Impact Project

	8.3 Language and Humanities Modules
	8.3.1 Languages
	8.3.2 Humanities
	8.3.2.1 Introduction to Philosophical Ethics
	8.3.2.2 Introduction to the Philosophy of Science
	8.3.2.3 Introduction to Visual Culture

	9 Appendix
	9.1 Intended Learning Outcomes Assessment-Matrix

