
1

2

Subject-specific Examination Regulations for Computer Science (Fachspezifische Prüfungsordnung)

The subject-specific examination regulations for Computer Science are defined by this program
handbook and are valid only in combination with the General Examination Regulations for
Undergraduate degree programs (General Examination Regulations = Rahmenprüfungsordnung). This
handbook also contains the program-specific Study and Examination Plan (Chapter 6).

Upon graduation, students in this program will receive a Bachelor of Science (BSc) degree with a scope
of 180 ECTS (for specifics see Chapter 4 of this handbook).

Version Valid as of Decision Details

Fall 2024- V1.1

Fall 2024 – V1

Sep 01, 2024

Aug 29, 2024

Apr 26, 2023

Editorial changes

Substantial change approved
by the Academic Senate

Jun 26, 2019 Originally approved by
Academic Senate

3

Contents
1 Program Overview ... 6

1.1 Concept ... 6

 The Constructor University Educational Concept ... 6

 Program Concept ... 6

1.2 Specific Advantages of Computer Science at Constructor University 7

1.3 Program-Specific Educational Aims ... 8

 Qualification Aims ... 8

 Intended Learning Outcomes .. 9

1.4 Career Options and Support .. 9

1.5 Admission Requirements... 10

1.6 More Information and contacts .. 11

2 The Curricular Structure ... 12

2.1 General .. 12

2.2 The Constructor University 4C Model ... 12

 Year 1 – CHOICE ... 13

 Year 2 – CORE .. 14

 Year 3 – CAREER .. 15

2.3 The CONSTRUCTOR Track .. 17

 Methods Modules ... 17

 New Skills Modules .. 18

 German Language and Humanities Modules .. 18

3 Computer Science as a Minor ... 20

3.1 Qualification Aims ... 20

 Intended Learning Outcomes .. 20

3.2 Module Requirements ... 20

3.3 Degree ... 20

4 Computer Science Undergraduate Program Regulations ... 21

4.1 Scope of these Regulations ... 21

4.2 Degree ... 21

4.3 Graduation Requirements ... 21

5 Schematic Study Plan for Computer Science ... 22

6 Study and Examination Plan ... 23

1.1.1

1.1.2

1.3.1

1.3.2

2.2.1

2.2.2

2.2.3

2.3.1

2.3.2

2.3.3

3.1.1

4

7 Computer Science Modules .. 25

7.1 Programming in C and C++ .. 25

7.2 Algorithms and Data Structures .. 27

7.3 Mathematical Foundations of Computer Science ... 29

7.4 Digital Systems and Computer Architecture ... 31

7.5 Development in JVM Languages ... 34

7.6 Databases .. 36

7.7 Software Engineering .. 38

7.8 Operating Systems... 40

7.9 Machine Learning .. 42

7.10 Functional Programming ... 44

7.11 Automata, Computability, and Complexity ... 46

7.12 Legal and Ethical Aspects of Computer Science .. 48

7.13 Academic Skills in Computer Science .. 50

7.14 Computer Networks .. 52

7.15 Secure and Dependable Systems .. 54

7.16 Computer Graphics .. 56

7.17 Image Processing ... 58

7.18 Distributed Algorithms .. 60

7.19 Web Application Development ... 62

7.20 Computer Vision .. 64

7.21 Human-Computer Interaction ... 66

7.22 Artificial Intelligence .. 68

7.23 Robotics ... 70

7.24 Digital Design ... 72

7.25 Information Theory ... 74

7.26 Parallel and Distributed Computing .. 76

7.27 Internship / Startup and Career Skills ... 78

7.28 Bachelor Thesis and Seminar... 81

8 CONSTRUCTOR Track Modules ... 83

8.1 Methods Modules ... 83

 Elements of Linear Algebra ... 83

 Elements of Calculus.. 85

 Probability and Random Processes ... 87

 Numerical Methods ... 89

8.1.1

8.1.2

8.1.3

8.1.4

5

 Statistics and Data Analytics .. 92

 Matrix Algebra and Advanced Calculus I ... 94

 Matrix Algebra and Advanced Calculus II .. 96

8.2 New Skills ... 98

 Logic (perspective I) ... 98

 Logic (perspective II) .. 100

 Causation and Correlation (perspective I) ... 102

 Causation and Correlation (perspective II) .. 104

 Linear Model and Matrices.. 106

 Complex Problem Solving .. 108

 Argumentation, Data Visualization and Communication (perspective I) 110

 Argumentation, Data Visualization and Communication (perspective II) 112

 Agency, Leadership, and Accountability.. 114

 Community Impact Project .. 116

8.3 Language and Humanities Modules .. 118

 Languages .. 118

 Humanities .. 118

9 Appendix .. 124

9.1 Intended Learning Outcomes Assessment-Matrix .. 124

8.1.5

8.1.6

8.1.7

8.2.1

8.2.2

8.2.3

8.2.4

8.2.5

8.2.6

8.2.7

8.2.8

8.2.9

8.2.10

8.3.1

8.3.2

6

1 Program Overview

1.1 Concept

 The Constructor University Educational Concept

Constructor University aims to educate students for both an academic and a professional career by
emphasizing three core objectives: academic excellence, personal development, and employability to
succeed in the working world. Constructor University offers an excellent research driven education
experience across disciplines to prepare students for graduate education as well as career success by
combining disciplinary depth and interdisciplinary breadth with supplemental skills education and
extra-curricular elements. Through a multi-disciplinary, holistic approach and exposure to cutting-edge
technologies and challenges, Constructor University develops and enables the academic excellence,
intellectual competences, societal engagement, professional and scientific skills of tomorrows leaders
for a sustainable and peaceful future.

In this context, it is Constructor University’s aim to educate talented young people from all over the
world, regardless of nationality, religion, and material circumstances, to become citizens of the world
who are able to take responsible roles for the democratic, peaceful, and sustainable development of
the societies in which they live. This is achieved through a high-quality teaching as well as manageable
study loads and supportive study conditions. Study programs and related study abroad programs
convey academic knowledge as well as the ability to interact positively with other individuals and
groups in culturally diverse environments. The ability to succeed in the working world is a core
objective for all study programs at Constructor University, both in terms of actual disciplinary subject
matter and also to the social skills and intercultural competence. Study-program-specific modules and
additional specializations provide the necessary depth, interdisciplinary offerings and the minor option
provide breadth while the university-wide general foundation and methods modules, optional German
language and Humanities modules, and an extended internship period strengthen the employability
of students. The concept of living and learning together on an international campus with many cultural
and social activities supplements students’ education. In addition, Constructor University offers
professional advising and counseling.

Constructor University’s educational concept is highly regarded both nationally and internationally.
While the university has consistently achieved top marks over the last decade in Germany’s most
comprehensive and detailed university ranking by the Center for Higher Education (CHE), it has also
been listed by one of the most widely observed university rankings, the Times Higher Education (THE)
ranking. More details on the current ranking positions can be found at
https://constructor.university/more/about-us.

 Program Concept

Computer Science lies at the core of all modern industries and plays a major role in most areas of
science as well. Computer technology changes constantly, but the fundamental principles underlying
these technologies have now developed into a mature science. The Computer Science Bachelor of
Science program at Constructor University focuses on the understanding of these principles and their
application in practice.

Students will obtain core computer science competencies and skills (e.g., programming and software
engineering) and they will learn about fundamental abstractions and abstract notions of computing

1.1.1

1.1.2

https://constructor.university/more/about-us

7

(e.g., formal languages, logic, and computability theory). They will learn about the principles behind
and the proper usage of core technologies (e.g., databases, operating systems, and computer
networks). Finally, students will develop an understanding of the limitations of technology and side
effects of computing systems (e.g., security, dependability, legal, and ethical aspects). Because
computer science is rooted in mathematics, students will take mathematical methods modules
covering calculus, linear algebra, probability theory, and numerical methods or discrete mathematics.

The job market for computer scientists has been very favorable in the last few years, and there is no
indication that this will change in the near future. Because of the rapid changes in the field, it is
important to focus the education on the fundamental principles, as well as, subfields of promising
future relevance. Cross-disciplinary breadth and flexibility, as well as social and work organization skills
are increasingly important. The minor option allows the combination of the education in computer
science with a different discipline, thereby facilitating a cross-disciplinary specialization. The academic
qualifications and personal profiles for academic and industrial careers differ. Constructor University's
Computer Science program responds to the needs of both areas by offering a Computer Science major
designed for students who plan to work in the information technology industry or join graduate
programs related to the discipline. Students choosing the minor option can acquire basic skills in a
specific application domain, which makes them very well suited to work in a specific industrial sector.
The minor option can also be used to obtain specific knowledge in a closely related discipline to
develop a strong portfolio of knowledge at the intersection of computer science with related
disciplines.

1.2 Specific Advantages of Computer Science at Constructor University

The Computer Science program at Constructor University aims to be rigorous with respect to the
foundations, while at the same time being very contemporary with an international orientation.

• The educational approach of the faculty is to relate the theoretical contents of the discipline
to their contemporary application in industry and research. The instructors aim to include
recent developments of the topics covered to demonstrate how basic methods or techniques
are applied today and how the material covered relates to research challenges.

• Early involvement in research projects is an essential aspect of student education. Students
can obtain a vivid research experience at a very early stage, which often develops into
interdisciplinary collaborations later on.

• This distinctive educational approach, together with the positive teaching environment, has
been acknowledged in several rankings: In the computer science ranking published by the
Centre for Higher Education (CHE) in 2015, the support by instructors and the relationship to
research were ranked 1st of 68 study programs. In the European U-Multirank ranking published
in 2018, the overall learning experience in computer science was ranked 10th and research-
oriented teaching in computer science was ranked 2nd of 304 European universities offering
Computer Science programs.

• The involvement of students and alumni in the program development process using a direct
and open dialogue ensures that the program is constantly fine-tuned to the specific needs of
students, such as covering certain topics at a certain time with respect to the preparation of
internship or job applications.

• Student teams participate regularly in international programming competitions. Constructor
University hosted the Northwestern European Regional Contest (NWERC) of the ACM
International Collegiate Programming Contest on campus in 2010 and 2011. Student teams

8

participate in NWERC competitions since then on an annual basis. In 2014, students organized
the first JacobsHack! hackathon on campus, which was sponsored, among others, by Google,
Microsoft, and SAP. The 2018 edition of JacobsHack!, sponsored, among others, by Facebook,
Skyscanner, GitHub and Bloomberg, attracted participants from all over Europe.

1.3 Program-Specific Educational Aims

 Qualification Aims

The main subject-specific qualification aim is to enable students to take up qualified employment in
modern industries involving information technology or to enter graduate programs related to
computer science. Graduates of the Computer Science program have obtained the following
competencies:

• Computer science competence

Graduates are familiar with the theoretical foundations of computer science and they are able
to design and develop computer systems addressing a given application scenario. They are able
to analyze and structure complex problems and they are able to address them using methods
of computer science. Graduates are able to construct and maintain complex computer systems
using a structured, analytic, and creative approach.

• Communication competence

Graduates are able to communicate subject-specific topics convincingly in both spoken and
written form to fellow computer scientists or to customers.

• Teamwork and project management competence

Graduates are able to work effectively in a team and they are able to organize workflows in
complex development efforts. They are familiar with tools that support the development,
testing, and maintenance of large software systems and they are able to take design decisions
in a constructive way.

• Learning competence

Graduates have acquired a solid foundation enabling them to assess their own knowledge and
skills, learn effectively, and remain up to date with the latest developments in the rapidly
evolving field of computer science.

• Personal and professional competence

Graduates are able to develop a professional profile, justify professional decisions based on
theoretical and methodical knowledge, and critically reflect on their behavior with respect to
their consequences for society.

The design of the Computer Science program follows national guidelines published by the Gesellschaft
für Informatik (GI) (GI: Empfehlungen für Bachelor- und Masterprogramme im Studienfach Informatik
an Hochschulen, July 2016) and international guidelines published jointly by the Association for
Computing Machinery (ACM) and the Institute of Electrical and Electronics Engineers (IEEE) (ACM/IEEE:
Computer Science Curricula 2013, December 2013).

1.3.1

9

 Intended Learning Outcomes

By the end of the program, students will be able to

1. work professionally in the highly dynamic computer science field and enter graduate programs
related to computer science;

2. apply fundamental concepts of computer science while solving problems;
3. think in an analytical way at multiple levels of abstraction;
4. develop, analyze and implement algorithms using modern software engineering methods;
5. understand the characteristics of a range of computing platforms and their advantages and

limitations;
6. choose from multiple programming paradigms, languages and algorithms to solve a given

problem adequately;
7. describe the fundamental theory of computation and computability;
8. apply the necessary mathematical methods;
9. recognize the context in which computer systems operate, including interactions with people

and the physical world;
10. describe the state of published knowledge in their field or a specialization within it;
11. analyze and model real-life scenarios in organizations and industries using contemporary

techniques of computer science, also taking methods and insights of other disciplines into
account;

12. appropriately communicate solutions of problems in computer science in both spoken and
written form to specialists and non-specialists;

13. draw scientifically founded conclusions that consider social, professional, scientific, and ethical
aspects;

14. work effectively in a diverse team and take responsibility in a team;
15. take responsibility for their own learning, personal and professional development and role in

society, reflecting on their practice and evaluating critical feedback;
16. adhere to and defend ethical, scientific, and professional standards.

1.4 Career Options and Support

Computer science is one of the key disciplines of the 21st century, which affects almost all modern
industries. Consequently, the possible career paths are very broad for graduates with a computer
science degree and the job market is highly favorable. The job market includes jobs such as software
engineer, system integrator, information systems manager, data analyst, database administrator,
application developer, cyber security analyst, IT consultant, and system analyst.

Graduates of the Computer Science program at Constructor University have obtained positions in
companies of the information technology sector such as Amazon, Cleversoft, Facebook, Google,
Microsoft, SAP, Skype, 360 Treasury Systems, Twitter, Research Gate, and VMware, as well as within
companies that use information technology extensively such as the BMW Group, Deutsche Bank,
KPMG, and Uber. Some graduates have founded their own companies such as Deep Web Solutions
GmbH, Take Off Labs, and techOS GmbH.

Past graduates have also chosen to continue their education by enrolling into graduate programs at
other German universities such as the RWTH Aachen, the Technical University Berlin, and the Technical
University München; at other European universities such as the University of Amsterdam, the
University of Cambridge, EPFL Lausanne, the University College London, the University of Oxford, and

1.3.2

10

ETH Zürich; or at international universities such as Carnegie Mellon University, Cornell University, and
the University of Montreal.

The Career Service Center (CSC) helps students in their career development. It provides students with
high-quality training and coaching in CV creation, cover letter formulation, interview preparation,
effective presenting, business etiquette, and employer research as well as in many other aspects, thus
helping students identify and follow up on rewarding careers after graduating from Constructor
University. Furthermore, the Alumni Office helps students establish a long-lasting and worldwide
network which provides support when exploring job options in academia, industry, and elsewhere.

1.5 Admission Requirements

Admission to Constructor University is selective and based on a candidate’s school and/or university
achievements, recommendations, self-presentation, and performance on standardized tests. Students
admitted to Constructor University demonstrate exceptional academic achievements, intellectual
creativity, and the desire and motivation to make a difference in the world.

The following documents need to be submitted with the application:

• Recommendation Letter (optional)
• Official or certified copies of high school/university transcripts
• Educational History Form
• Standardized test results (SAT/ACT) if applicable
• Motivation statement
• ZeeMee electronic resume (optional)
• Language proficiency test results (TOEFL Score: 90, IELTS: Level 6.5 or equivalent)

Formal admission requirements are subject to higher education law and are outlined in the Admission
and Enrollment Policy of Constructor University.

For more detailed information about the admission visit: https://constructor.university/admission-
aid/application-information-undergraduate

https://constructor.university/admission-aid/application-information-undergraduate
https://constructor.university/admission-aid/application-information-undergraduate

11

1.6 More Information and contacts

For more information, please contact the study program chair:

Name: Prof. Dr. Jürgen Schönwälder

Email: jschoenwaelder@constructor.university

or visit our program website: https://constructor.university/programs/undergraduate-
education/computer-science

For more information on Student Services please visit:

Student services | Constructor University

mailto:jschoenwaelder@constructor.university
https://constructor.university/programs/undergraduate-education/computer-science
https://constructor.university/programs/undergraduate-education/computer-science
https://constructor.university/student-life/student-services

12

Figure 1: The Constructor University 4C-Model

2 The Curricular Structure

2.1 General

The curricular structure provides multiple elements for enhancing employability, interdisciplinarity,
and internationality. The unique CONSTRUCTOR Track, offered across all undergraduate study
programs, provides comprehensive tailor-made modules designed to achieve and foster career
competency. Additionally, a mandatory internship of at least two months after the second year of
study and the possibility to study abroad for one semester give students the opportunity to gain insight
into the professional world, apply their intercultural competences and reflect on their roles and
ambitions for employment and in a globalized society.

All undergraduate programs at Constructor University are based on a coherently modularized
structure, which provides students with an extensive and flexible choice of study plans to meet the
educational aims of their major as well as minor study interests and complete their studies within the
regular period.

The framework policies and procedures regulating undergraduate study programs at Constructor
University can be found on the website (https://constructor.university/student-life/student-
services/university-policies).

2.2 The Constructor University 4C Model

Constructor University offers study programs that comply with the regulations of the European Higher
Education Area. All study programs are structured according to the European Credit Transfer System
(ECTS), which facilitates credit transfer between academic institutions. The three-year undergraduate
programs involve six semesters of study with a total of 180 ECTS credit points (CP). The undergraduate
curricular structure follows an innovative and student-centered modularization scheme, the 4C Model.
It groups the disciplinary content of the study program in three overarching themes, CHOICE-CORE-
CAREER according to the year of study, while the university-wide CONSTRUCTOR Track is dedicated to
multidisciplinary content dedicated to methods as well as intellectual skills and is integrated across all
three years of study. The default module size is 5 CP, with smaller 2.5 CP modules being possible as
justified exceptions, e.g., if the learning goals are more suitable for 2.5 CP and the overall student
workload is balanced.

Year1

CHOICE

Students have the CHOICE
to decide on tl>eir major
after the first year.

>

4C Curriculum
Year2

CORE

Students study the CORE
elements of their major and
may choose~ minor.

Year1-3

Year 3

CAREER

Students enhance thei, CAREER
slolls and prepare for the job market.
graduate school and society.

CONSTRUCTOR Track >
CONSTRUCTOR Tr.Eck teaches multidisciplinary stills, competences and methods
i!nd is integrated ocros.s all three yl:!ms of study.

https://constructor.university/student-life/student-services/university-policies
https://constructor.university/student-life/student-services/university-policies

13

 Year 1 – CHOICE

The first study year is characterized by a university-specific offering of disciplinary education that builds
on and expands upon the students’ entrance qualifications. Students select introductory modules for
a total of 45 CP from the CHOICE area of a variety of study programs, of which 15-45 CP will belong to
their intended major. A unique feature of our curricular structure allows students to select their major
freely upon entering Constructor University. The team of Academic Advising Services offers curriculum
counseling to all Bachelor students independently of their major, while Academic Advisors, in their
capacity as contact persons from the faculty, support students individually in deciding on their major
study program.

To pursue Computer Science as a major, the following CHOICE modules (30 CP) need to be taken as
mandatory (m) modules:

• CHOICE Module: Programming in C and C++ (m, 7.5 CP)
• CHOICE Module: Algorithms and Data Structures (m, 7.5 CP)
• CHOICE Module: Mathematical Foundations of Computer Science (m, 7.5 CP)
• CHOICE Module: Digital Systems and Computer Architecture (m, 7.5 CP)

The first two modules, Programming in C and C++ and Algorithms and Data Structures, introduce
students to imperative and object-oriented programming and basic algorithms and data structures.
The Mathematical Foundations of Computer Science module covers mathematical concepts like
boolean algebra, propositional and predicate logic, abstract algebra, and graph theory. Students learn
to work with formal notations and how to construct proofs. Starting with elementary digital gates, the
Digital Systems and Computer Architecture module develops an understanding of how the hardware
components of a computer system work. Students learn programming at the machine instruction level.

The remaining CHOICE modules (15 CP) can be selected in the first year of studies according to interest
and/or with the aim to allow a change of major up until the beginning of the second year, when the
major choice becomes fixed (see 2.2.1.1 below). Students not taking up a minor take the Development
in JVM Languages module in the second semester.

Students can still change to another major at the beginning of their second year of studies if they have
taken the corresponding mandatory CHOICE modules in their first year of studies. All students must
participate in an entry advising session with their Academic Advisors to learn about their major change
options and consult their Academic Advisor prior to changing their major.

Students that would like to retain a further option are strongly recommended to additionally register
for the CHOICE modules of one of the following study programs in their first year:

• International Relations: Politics and History (IRPH)
CHOICE Module: Introduction to International Relations Theory (7.5 CP)
CHOICE Module: Introduction to Modern European History (7.5 CP)

• Integrated Social and Cognitive Psychology (ISCP)
CHOICE Module: Essentials of Cognitive Psychology (7.5 CP)
CHOICE Module: Essentials of Social Psychology (7.5 CP)

• Robotics and Intelligent Systems (RIS)

CHOICE Module: General Electrical Engineering I (m, 7.5 CP)

2.2.1

14

• Software, Data and Technology (SDT)

CHOICE Module: Core Algorithms and Data Structures (m, 7.5 CP)
CHOICE Module: Development in JVM Languages (m, 7.5 CP)

The module descriptions can be found in the respective Study Program Handbook.

 Year 2 – CORE

In their second year, students take a total of 45 CP from a selection of in-depth, discipline-specific CORE
modules. Building on the introductory CHOICE modules and applying the methods and skills acquired
so far (see 2.3.1), these modules aim to expand the students’ critical understanding of the key theories,
principles, and methods in their major for the current state of knowledge and best practice.

To pursue Computer Science as a major, at least the following mandatory CORE modules (30 CP) need
to be taken:

• CORE Module: Databases (m, 7.5 CP)
• CORE Module: Software Engineering (m, 7.5 CP)
• CORE Module: Operating Systems (m, 7.5 CP)
• CORE Module: Automata, Computability, and Complexity (m, 7.5 CP)

Students decide to complement their studies by taking the discipline-specific mandatory elective (me)
CORE modules (15 CP):

• CORE Module: Functional Programming (me, 5 CP)
• CORE Module: Legal and Ethical Aspects of Computer Science (me, 2.5 CP)
• CORE Module: Machine Learning (me, 5 CP)
• CORE Module: Academic Skills in Computer Science (me, 2.5 CP)

or substitute these modules with CORE modules from other study programs with the aim of pursuing
a minor in a second field.

Computer Science students can take CORE modules (or more advanced Specialization modules) from
a second discipline, which allows them to incorporate a minor study track into their undergraduate
education, within the 180 CP required for a bachelor’s degree. The educational aims of a minor are to
broaden the students’ knowledge and skills, support the critical reflection of statements in complex
contexts, foster an interdisciplinary approach to problem-solving, and to develop an individual
academic and professional profile in line with students’ strengths and interests. This extra qualification
will be highlighted in the transcript.

The Academic Advising Coordinator, Academic Advisor, and the Study Program Chair of the minor
study program support students in the realization of their minor selection; consultation with the
Academic Advisor is mandatory when choosing a minor.

As a rule, this requires Computer Science students to

• select two CHOICE modules (15 CP) from the desired minor program in the first year and
• substitute the mandatory elective Computer Science CORE modules Functional

Programming (me, 5 CP), Legal and Ethical Aspects of Computer Science (me, 2.5 CP),

2.2.2

15

Machine Learning (me, 5 CP), and Academic Skills in CS (me, 2.5 CP) in the second year
with the default minor CORE modules of the minor study program. Note that the
substituted CORE modules can still be selected in the third year as specialization modules.

The requirements for each specific minor are described in the handbook of the study program offering
the minor (Chapter 3.2) and are marked in the respective Study and Examination Plans. For an overview
of accessible minors, please check the Major/Minor Combination Matrix which is published at the
beginning of each academic year.

Note: Students pursuing Computer Science as a major cannot pursue Software, Data and Technology
(SDT) or Data Science as a minor.

 Year 3 – CAREER

During their third year, students prepare and make decisions about their career path after graduation.
To explore available choices and to gain professional experience, students undertake a mandatory
summer internship. The third year of studies allows Computer Science students to take Specialization
modules within their discipline, but also focuses on the responsibility of students beyond their
discipline (see CONSTRUCTOR Track).

The fifth semester also opens a mobility window for a diverse range of study abroad options. Finally,
the sixth semester is dedicated to fostering the students’ research experience by involving them in an
extended Bachelor thesis project.

2.2.3.1 Internship / Start-up and Career Skills Module

As a core element of Constructor University’s employability approach students are required to engage
in a mandatory two-month internship of 15 CP that will usually be completed during the summer
between the second and third years of study. This gives students the opportunity to gain first-hand
practical experience in a professional environment, apply their knowledge and understanding in a
professional context, reflect on the relevance of their major to employment and society, reflect on
their own role in employment and society, and find a professional orientation. The internship can also
establish valuable contacts for the students’ Bachelor’s thesis project, for the selection of a Master
program graduate school or further employment after graduation. This module is complemented by
career advising and several career skills workshops throughout all six semesters that prepare students
for the transition from student life to professional life. As an alternative to the full-time internship,
students interested in setting up their own company can apply for a start-up option to focus on
developing of their business plans.

For further information, please contact the Career Service Center (CSC)
(https://constructor.university/student-life/career-services).

2.2.3.2 Specialization Modules

In the third year of their studies, students take 15 CP from major-specific or major-related, advanced
Specialization modules to consolidate their knowledge and to be exposed to state-of-the-art research
in the areas of their interest. This curricular component is offered as a portfolio of modules, from which
students can make free selections during their 5th and 6th semester. The default specialization module
size is 5 CP, with smaller 2.5 CP modules being possible as justified exceptions.

2.2.3

https://constructor.university/student-life/career-services

16

To pursue CS as a major, 15 CP from the following mandatory elective Specialization Modules need to
be taken:

• CS Specialization: Computer Graphics (me, 5 CP)
• CS Specialization: Image Processing (me, 5 CP)
• CS Specialization: Distributed Algorithms (me, 5 CP)
• CS Specialization: Web Application Development (me, 5 CP)
• CS Specialization: Computer Networks (me, 5 CP)
• CS Specialization: Secure and Dependable Systems (me, 5 CP)
• RIS CORE: Computer Vision (me, 5 CP)
• RIS Specialization: Human Computer Interaction (me, 5 CP)
• RIS CORE: Artificial Intelligence (me, 5 CP)
• RIS CORE: Robotics (me, 5 CP)
• RIS CORE: Machine Learning (me, 5 CP)
• ECE Specialization: Digital Design (me, 5 CP)
• ECE CORE: Information Theory (me, 5 CP)
• SDT CORE: Functional Programming (me, 5 CP)
• DE Specialization: Parallel and Distributed Computing (me, 5 CP)

Students pursuing a minor in a second field of studies can additionally select Specialization Modules
from:

• CS CORE: Legal and Ethical Aspects of Computer Science (me, 2.5 CP)
• CS CORE: Academic Skills in Computer Science (me, 2.5 CP)

2.2.3.3 Study Abroad

Students have the opportunity to study abroad for a semester to extend their knowledge and abilities,
broaden their horizons and reflect on their values and behavior in a different context as well as on
their role in a global society. For a semester abroad (usually the 5th semester), modules related to the
major with a workload equivalent to 22.5 CP must be completed. Modules recognized as study abroad
CP need to be pre-approved according to Constructor University study abroad procedures. Several
exchange programs allow students to directly enroll at prestigious partner institutions worldwide.
Constructor University’s participation in Erasmus+, the European Union’s exchange program, provides
an exchange semester at a number of European universities that include Erasmus study abroad
funding.

For further information, please contact the International Office (https://constructor.university/
student-life/study-abroad/international-office).

Computer Science students pursuing a study abroad in their 5th semester are required to select their
modules at the study abroad partners such that they can be used to substitute between 10-15 CP of
major-specific Specialization modules and between 5-15 CP of modules equivalent to the non-
disciplinary New Skills modules (see CONSTRUCTOR Track). In their 6th semester, according to the
study plan, returning study-abroad students complete the Bachelor Thesis/Seminar module (see next
section), they take any missing Specialization modules to reach the required 15 CP in this area, and
they take any missing New Skills modules to reach 15 CP in this area.

https://constructor.university/%20student-life/study-abroad/international-office
https://constructor.university/%20student-life/study-abroad/international-office

17

2.2.3.4 Bachelor Thesis/Seminar Module

This module is a mandatory graduation requirement for all undergraduate students. It consists of two
module components in the major study program guided by a Constructor University faculty member:
the Bachelor Thesis (12 CP) and a Seminar (3 CP). The title of the thesis will appear on the students’
transcripts.

Within this module, students apply the knowledge skills, and methods they have acquired in their
major discipline to become acquainted with actual research topics, ranging from the identification of
suitable (short-term) research projects, preparatory literature searches, the realization of discipline-
specific research, and the documentation, discussion, and interpretation of the results.

With their Bachelor Thesis students demonstrate mastery of the contents and methods of the
computer science research field. Furthermore, students show the ability to analyze and solve a well-
defined problem with scientific approaches, a critical reflection of the status quo in scientific literature,
and the original development of their own ideas. With the permission of a Constructor University
Faculty Supervisor, the Bachelor Thesis can also have an interdisciplinary nature. In the seminar,
students present and discuss their theses in a course environment and reflect on their theoretical or
experimental approach and conduct. They learn to present their chosen research topics concisely and
comprehensively in front of an audience and to explain their methods, solutions, and results to both
specialists and non-specialists.

2.3 The CONSTRUCTOR Track

The CONSTRUCTOR Track is another important feature of Constructor University’s educational model.
The Constructor Track runs orthogonal to the disciplinary CHOICE, CORE, and CAREER modules across
all study years and is an integral part of all undergraduate study programs. It provides an intellectual
tool kit for lifelong learning and encourages the use of diverse methodologies to approach cross-
disciplinary problems. The CONSTRUCTOR track contains Methods, New Skills and German Language
and Humanities modules.

 Methods Modules

Methods such as mathematics, statistics, programming, data handling, presentation skills, academic
writing, and scientific and experimental skills are offered to all students as part of the Methods area in
their curriculum. The modules that are specifically assigned to each study program equip students with
transferable academic skills. They convey and practice specific methods that are indispensable for each
students’ chosen study program. Students are required to take 20 CP in the Methods area. The size of
all Methods modules is 5 CP.

To pursue Computer Science as major, the following Methods module (5 CP) is mandatory

• Methods Module: Elements of Linear Algebra (me, 5 CP)
• Methods Module: Elements of Calculus (me, 5 CP)
• Methods Module: Probability and Random Processes (m, 5 CP)

Students who have a strong mathematical background can also choose Matrix Algebra and Advanced
Calculus I and II (me, 5 CP each) instead of Elements of Linear Algebra and Elements of Calculus.

For the remaining 5 CP CS students can choose between the Methods modules

2.3.1

18

• Methods Module: Numerical Methods (me, 5 CP)
• Methods Module: Statistics and Data Analytics (me, 5 CP)

 New Skills Modules

This part of the curriculum constitutes an intellectual and conceptual tool kit that cultivates the
capacity for a particular set of intellectual dispositions including curiosity, imagination, critical thought,
and transferability. It nurtures a range of individual and societal capacities, such as self-reflection,
argumentation and communication. Finally, it introduces students to the normative aspects of inquiry
and research, including the norms governing sourcing, sharing, withholding materials and research
results as well as others governing the responsibilities of expertise as well as the professional point of
view

All students are required to take the following modules in their second year:

• New Skills Module: Logic (m, 2.5 CP)
• New Skills Module: Causation and Correlation (m, 2.5 CP)

These modules will be offered with two different perspectives, one of which the students can choose.
The module perspectives are independent modules which examine the topic from different points of
view. Please see the module description for more details.

In the third year, students take three 5 CP modules that build upon previous modules in the track and
are partially constituted by modules that are more closely linked to each student’s disciplinary field of
study. The following module is mandatory for all students:

• New Skills Module: Argumentation, Data Visualization and Communication (m, 5 CP)

This module will also be offered with two different perspectives of which the students can choose.

In their fifth semester, students may choose between:

• New Skills Module: Linear Model/Matrices (me, 5 CP) and
• New Skills Module: Complex Problem Solving (me, 5 CP).

The sixth semester also contains the choice between two modules, namely:

• New Skills Module: Agency, Leadership and Accountability (me, 5 CP) and
• New Skills Module: Community Impact Project (me, 5 CP).

Students who study abroad during the fifth semester and are not substituting the mandatory
Argumentation, Data Visualization and Communication module, are required to take this module
during their sixth semester. Students who remain on campus are free to take the Argumentation, Data
Visualization and Communication module in person in either the fifth or sixth semester as they prefer.

 German Language and Humanities Modules

German language abilities foster students’ intercultural awareness and enhance their employability in
their host country. They are also beneficial for securing mandatory internships (between the 2nd and
3rd year) in German companies and academic institutions. Constructor University supports its students

2.3.2

2.3.3

19

in acquiring basic as well as advanced German skills in the first year of the Constructor Track. Non-
native speakers of German are encouraged to take 2 German modules (2.5 CP each), but are not
obliged to do so. Native speakers and other students not taking advantage of this offering
take alternative modules in Humanities in each of the first two semesters:

• Humanities Module: Introduction to Philosophical Ethics (2.5 CP)
• Humanities Module: Introduction to the Philosophy of Science (2.5 CP)
• Humanities Module: Introduction to Visual Culture (2.5 CP)

20

3 Computer Science as a Minor

3.1 Qualification Aims

Students obtaining a minor in Computer Science learn the basic principles of software development
and modern software development processes. They acquire an understanding of how modern
information systems are designed and implemented. Upon completion of the minor, they will have
obtained sufficient knowledge about computer science concepts such that they can effectively work
together with professionals with a Computer Science degree. Students obtaining a minor in Computer
Science can help to drive digitalization processes, as they can effectively translate requirements of the
field of their major into terminology and technology used by Computer Science professionals. Students
majoring in a technical discipline can obtain a minor to strengthen their understanding of how to use
software and hardware components effectively, thereby achieving efficient solutions for problems in
their domain.

 Intended Learning Outcomes

With a minor in Computer Science, students will be able to

1. develop solutions to problems in computer science in close collaboration with computer
science professionals;

2. communicate requirements appropriately to their audience and understand computer science
aspects of a solution;

3. apply programming concepts and basic algorithms to solve software development problems
of moderate complexity in an adequate way;

4. understand how design choices impact the efficiency of solutions.

3.2 Module Requirements

A minor in Computer Science requires 30 CP. The default option to obtain a minor in Computer Science
is marked in the Study and Examination Plan in chapter 6. It includes the following mandatory CHOICE
and CORE modules:

• CHOICE Module: Programming in C and C++ (m, 7.5 CP)
• CHOICE Module: Algorithms and Data Structures (m, 7.5 CP)
• CORE Module: Databases (m, 7.5 CP)
• CORE Module: Software Engineering (m, 7.5 CP)

Upon the consultation with the Academic Advisor and approval by the CS Study Program Coordinator,
individual CORE modules from the default minor can be replaced by other advanced modules (CORE
or Specialization) from the CS major.

3.3 Degree

After successful completion, the minor in Computer Science will be listed on the final transcript under
PROGRAM OF STUDY and BA/BSc – [name of the major] as “(Minor: Computer Science).”

3.1.1

21

4 Computer Science Undergraduate Program Regulations

4.1 Scope of these Regulations

The regulations in this handbook are valid for all students who entered the Computer Science
undergraduate program at Constructor University in Fall 2024. In case of a conflict between the
regulations in this handbook and the general Policies for Bachelor Studies, the latter applies (see
https://constructor.university/student-life/student-services/university-policies).

In exceptional cases, certain necessary deviations from the regulations of this study handbook might
occur during the course of study (e.g., change of the semester sequence, assessment type, or the
teaching mode of courses).

In general, Constructor University reserves therefore the right to change or modify the regulations of
the program handbook according to relevant policies and processes also after its publication at any
time and in its sole discretion.

4.2 Degree

Upon successful completion of the study program, students are awarded a Bachelor of Science degree
in Computer Science.

4.3 Graduation Requirements

To graduate, students need to obtain 180 CP. In addition, the following graduation requirements apply:

• Students need to complete all mandatory components of the program as indicated in the Study
and Examination Plan in chapter 6 of this handbook.

• Students graduating in Computer Science without a minor have to obtain
o 20 CP in Methods modules (mathematics),
o 90 CP in Computer Science modules, and
o 15 CP for the Bachelor thesis and the associated seminar.

• Students graduating in Computer Science with a minor in a second discipline have to obtain
o 20 CP in Methods modules (mathematics),
o 75 CP in Computer Science modules, and

• Students have to obtain 15 CP for the Bachelor thesis and the associated seminar.

https://constructor.university/student-life/student-services/university-policies

22

5 Schematic Study Plan for Computer Science

Figure 2 shows schematically the sequence and types of modules required for the study program. A more detailed description, including the assessment types, is given in the
Study and Examination Plans in following section.

Figure 2: Schematic Study Plan

C >ONSTRUCTOR
UNIVERSITY Computer Science (180 CP)

CHOICE/ CORE/ CAREER 3 x 45 = 135 CP

I m 15CP I Bachelor Thesis / Seminar

Summer Internship/ Start-Up
(after 2nd year)

Specialization I Specialization II Specialization Ill
me, 5 CP me, 5CP me, 5 CP m, 15 CP

Automata , Computability,

Machine Learning Academic Software Engineering
Complexity Skills in CS

m, 7.5CP m, 7.5CP me, 5CP me, 2.5 CP

Functional
Legal and

Databases Operating Systems Ethical

Programming Aspects

m, 7.5CP m, 7.5CP me 5CP me, 2.5 CP

Digital Systems and Computer Development in JVM
Algorithms and Data Structures

Architecture Languages
m, 7.5CP m, 7.5CP me, 7.5 CP

Programming in C and C++
Mathematical Foundations of

Own Selection
Computer Science

m, 7.5CP m, 7.5CP me, 7.5 CP

C>ONSTRUCTOR

CONSTRUCTOR Track 45 CP

Agency, Leadership &
Accountability OR Community

Impact Project
Argumentation, me, 5CP Data Visualization

and
Communication" Linear Model and Matrices OR

Complex Problem Solving
m, 5CP me, 5CP

Numerical Methods OR
Causation/

Statistics and Data
Correlation ••

Analyticsme 5 CP m, 2.5CP

Probability and Random Logic••
Processes

m, 5CP m, 2.5 CP

German I

Elements of Calculus Humanities

me 5CP me, 2.5 CP

German/
Elements of Linear Humanities

Algebra
me, 5 CP me, 2.5 CP

Minor Option in CS (30 CP) CP: Credit Points m: mandatory Study abroad Option in 5th **Different module
I ______________________________ 1

me: mandatory elective Semester (22.5 CP) perspectives available

23

6 Study and Examination Plan

Computer Science (CS) BSc
Matriculation Fall 2024

Program-Specific Modules Type Assessment Period Status¹ Sem. CP CONSTRUCTOR Track Modules (General Education) Type Assessment Period Status¹ Sem. CP
Year 1 - CHOICE
Take the mandatory CHOICE modules listed below, this is a requirement for the Computer Science program.

Unit: Programming, Algorithms, and Data Structures (default minor choice modules) 15 Unit: Methods 10
CH-230 Module: Programming in C and C++ m 1 7.5 CTMS-MAT-24 Module: Elements of Linear Algebra me 1 5
CH-230-A Programming in C and C++ Lecture Written examination Examination period 5 CTMS-24 Elements of Linear Algebra Lecture Written examination Examination period
CH-230-B Programming in C and C++ Tutorial Tutorial Program Code During the semester 2.5 CTMS-MAT-25 Module: Elements of Calculus me 2 5
CH-231 Module: Algorithms and Data Structures m 2 7.5 CTMS-25 Elements of Calculus Lecture Written examination Examination period
CH-231-A Algorithms and Data Structures Lecture Written examination Examination period

Unit: Computer Science, Robotics, and Intelligent Systems 15 CTMS-MAT-22 Module: Matrix Algebra & Advanced Calculus I me 1 5

CH-233 Module: Mathematical Foundations of Computer Science m 1 7.5 CTMS-22 Matrix Algebra & Advanced Calculus I Lecture Written examination Examination period
CH-233-A Mathematical Foundations of Computer Science Lecture 5 CTMS-MAT-23 Module: Matrix Algebra & Advanced Calculus II me 2 5
CH-233-B Mathematical Foundations of Computer Science Tutorial Tutorial 2.5 CTMS-23 Matrix Algebra & Advanced Calculus II Lecture Written examination Examination period
CH-234 Module: Digital Systems and Computer Architecture m 2 7.5
CH-234-A Digital Systems and Computer Architecture Lecture Written examination Examination period 5 Unit: German Language and Humanities (choose one module for each sememster) 5
CH-234-B Digital Systems and Computer Architecture Tutorial Tutorial During the semester 2.5 German is default language and open to Non-German speakers (on campus and online). 4

Unit: CHOICE (own selection) 1/2 15 CTLA-xxx Module: Language 1 me 1 2,5

CTLA-xxx Language 1 Seminar Various Various me

SDT-103 Module:Development in JVM Languages me 2 7.5 CTLA-xxx Module: Language 2 me 2 2,5
SDT-103-A Development in JVM Languages Lecture Written examination Examination period 2.5 CTLA-xxx Language 2 Seminar Various Various me
SDT-103-B Development in JVM Languages Tutorial Program Code During the semester 5 CTHU-HUM-001 Humanities Module: Introduction to Philosophical Ethics me 1 2,5

CTHU-001 Introduction into Philosophical Ethics Lecture (online) Written examination Exam period me

CTHU-HUM-002 Humanities Module: Introduction to the Philosophy of Science me 2 2,5

CTHU-002 Introduction to the Philosophy of Science Lecture (online) Written examination Exam period me

CTHU-HUM-003 Humanities Module: Introduction to Visual Culture me 2 2,5

CTHU-003 Introduction to Visual Culture Lecture (online) Written examination Exam period me

Year 2 - CORE 15
Take all CORE modules listed below or replace mandatory elective (me) modules with default CORE modules from minor study program

Unit: Advanced Computer Science I (default minor advanced modules) 15 Unit: Methods 10
CO-560 Module: Databases m 3 7.5 CTMS-MAT-12 Module: Probability and Random Processes m 3 5

CO-560-A Databases Lecture Written examination Examination period 5 CTMS-12 Probability and Random Processes Lecture Written examination Examination period 5
CO-560-B Databases- Project Project Project assessment During the semester 2.5 Take one of the two listed mandatory elective methods modules:
CO-561 Module: Software Engineering m 4 7.5 CTMS-MET-21 Module: Statistics and Data Analysis me 4 5
CO-561-A Software Engineering Lecture Written examination Examination period 2.5 CTMS-21 Statistics and Analysis Lecture Written examination Examination period
CO-561-B Software Engineering Project Project Project assessment During the semester 5 CTMS-MAT-13 Module: Numerical Methods me 4 5

Unit: Advanced Computer Science II 15 CTMS-13 Numerical Methods Lecture Written examination Examination period
CO-562 Module: Operating Systems m 3 7.5
CO-562-A Operating Systems Lecture Written examination Examination period
CO-563 Module: Automata, Computability, and Complexity m 4 7.5 Unit: New Skills 5
CO-563-A Automata, Computability, and Complexity Lecture Written examination Examination period Choose one of the two modules

Unit: Advanced Computer Science III 15 CTNS-NSK- 01 Module: Logic (perspective I) me 3 2,5
SDT-202 Module: Functional Programming me 3 5 CTNS-01 Logic (perspective I) Online Lecture Written Examination Examination period 2,5
SDT-202-A Functional Programming Lecture Written examination Examination period 2.5 CTNS-NSK-02 Module: Logic (perspective II)
SDT-202-B Functional Programming Tutorial Tutorial Program code During the semester 2.5 CTNS-02 Logic (perspective II) Online Lecture Written Examination Examination period 2,5
CO-565 Module: Legal and Ethical Aspects of Computer Science me 3 2.5
CO-565-A Legal and Ethical Aspects of Computer Science Lecture Poster presentation Examination period CTNS-NSK-03 Module: Correlation and Causation (perspective I) me 4 2,5
CO-541 Module: Machine Learning m 4 5 CTNS-03 Correlation and Causation (perspective I) Online Lecture Written Examination Examination period 2,5
CO-541-A Machine Learning Lecture Written examination Examination period CTNS-NSK-04 Module: Correlation and Causation (perspective II) me 4 2,5
CO-567-A Module: Academic Skills in Computer Science me 4 2.5 CTNS-04 Correlation and Causation (perspective II) Online Lecture Written Examination Examination period 2,5
CO-567-A Academic Skills in Computer Science Seminar Project assessment Examination period

Written examination Examination period

Students take two further CHOICE modules from those offered for all other study programs² if they intend to pursue a minor. If no minor will be pursued, take SDT-103 and one additional Choice module
from another study program

Choose one of the two modules

45

45

15

Students who have a strong mathematical background can also choose the following instead of CTMS-MAT-22 and CTMS-MAT-23:

24

Year 3 - CAREER

CA-INT-900 Module: Summer Internship m 4/5 15 Unit: New Skills 10
CA-INT-900-0 Summer Internship Report/Business Plan During the 5th semester Choose one of the two modules
CA-CS-800 Module: Thesis / Seminar CS m 6 15 CTNS-NSK-05 Module: Linear Model / Matrices me 5 5
CA-CS-800-T Thesis CS Thesis Thesis 15th of May 12 CTNS-05 Linear Model/ Matrices Seminar (online) Written examination Examination period 5
CA-CS-800-S Seminar CS Seminar Presentation During the semester 3 CTNS-NSK-06 Module: Complex Problem Solving me 5 5

Unit: Specialization CS m 5/6 15 CTNS-06 Complex Problem Solving Lecture (online) Written examination Examination period 5
Take a total of 15 CP Specialization Modules Choose one of the two modules 5
CA-S-CS-801 Module: Computer Graphics me 5 5 CTNS-NSK-07 Module: Argumentation, Data Visualization and Communication me 5/6 5
CA-S-CS-801-A Computer Graphics Lecture Written examination Examination period CTNS-07 Argumentation, Data Visualization and Communication (perspective I) Online Lecture Written examination Examination period 5 5
CA-S-CS-802 Module: Image Processing me 6 5 CTNS-NSK-08 Module: Argumentation, Data Visualization and Communication me 5/6 5
CA-S-CS-802-A Image Processing Lecture Written examination Examination period 5 CTNS-08 Argumentation, Data Visualization and Communication (perspective II) Online Lecture Written examination Examination period 6 5
CA-S-CS-803 Module: Distributed Algorithms me 6 5 Choose one of the two modules
CA-S-CS-803-A Distributed Algorithms Lecture Written examination Examination period 5 CTNS-NSK Module: Agency, Accountability & Leadership me 6 5

CA-S-CS-804 Module: Web Application Development	 me 6 5 CTNS-09 Agency, Accountability & Leadership Lecture (online) Written examination Examination period 5

CA-S-CS-804-A Web Application Development Lecture Written examination Examination period 2.5 CTNS-CIP-10 Module: Community Impact Project me 5/6 5

CA-S-CS-804-B Web Application Development Project Project assessment During the semester 2.5 CTNS-CIP-10 Community Impact Project Project Project During the Sememster 5

CO-564 Module: Computer Networks me 5 5
CO-564-A Computer Networks Lecture Written examination Examination period
CO-566 Module: Secure and Dependable Systems me 6 5
CO-566-A Secure and Dependable Systems Lecture Written examination Examination period
CA-S-xxx Specialization electives (from RIS, ECE, DE study programs)³ Lecture Written examination Examination period me 5/6 5

Total CP 180
¹ Status (m = mandatory, me = mandatory elective)
² For a full listing of all CHOICE / CORE / CAREER / CONSTRUCTOR Track modules please consult the CampusNet online catalogue and /or the study program handbooks.
³ For details please see the CS program handbook.
4 German native speakers will have alternatives to the language courses (in the field of Humanities).

45 15

Figure 3: Study and Examination Plan

25

7 Computer Science Modules

7.1 Programming in C and C++

Module Name Module Code Level (type) CP
Programming in C and C++ CH-230 Year 1 (CHOICE) 7.5

Module Components

Number Name Type CP

CH-230-A Programming in C and C++ Lecture 5

CH-230-B Programming in C and C++ - Tutorial Tutorial 2.5

Module
Coordinator

Dr. Kinga
Lipskoch

Program Affiliation

• Computer Science (CS)

Mandatory Status

Mandatory for CS, SDT, RIS,
ECE
minor CS, minor RIS and
minor Software Development

Entry
Requirements

Pre-requisites

☒ None

Co-requisites

☒ None

Knowledge, Abilities, or
Skills

Frequency

Annually
(Fall)

Forms of Learning and
Teaching
• Lecture attendance (35

hours)
• Tutorial attendance

(17.5 hours)
• Independent study (115

hours)
• Exam preparation (20

hours)
Duration

1 semester

Workload

187.5 hours

Recommendations for Preparation

It is recommended that students install a suitable programming environment on their notebooks. It is recommended to
install a Linux system such as Ubuntu, which comes with open-source compilers such as gcc and g++ and editors such as
vim or emacs. Alternatively, the open-source Code: Blocks integrated development environment can be installed to solve
programming problems.

Content and Educational Aims

This course offers an introduction to programming using the programming languages C and C++. After a short overview of
the program development cycle (editing, preprocessing, compiling, linking, executing), the module presents the basics of
C programming. Fundamental imperative programming concepts such as variables, loops, and function calls are
introduced in a hands-on manner. Afterwards, basic data structures such as multidimensional arrays, structures, and
pointers are introduced and dynamically allocated multidimensional arrays and linked lists and trees are used for solving
simple practical problems. The relationships between pointers and arrays, pointers and structures, and pointers and
functions are described, and they are illustrated using examples that also introduce recursive functions, file handling, and
dynamic memory allocation.

The module then introduces basic concepts of object-oriented programming languages using the programming language
C++ in a hands-on manner. Concepts such as classes and objects, data abstractions, and information hiding are introduced.
C++ mechanisms for defining and using objects, methods, and operators are introduced and the relevance of constructors,
copy constructors, and destructors for dynamically created objects is explained. Finally, concepts such as inheritance,
polymorphism, virtual functions, and overloading are introduced. The learned concepts are applied by solving
programming problems.

26

Intended Learning Outcomes

By the end of this module, students will be able to

1. explain basic concepts of imperative programming languages such as variables, assignments, loops, and
function calls;

2. write, test, and debug programs in the procedural programming language C using basic C library
functions;

3. demonstrate how to use pointers to create dynamically allocated data structures such as linked lists;
4. explain the relationship between pointers and arrays;
5. illustrate basic object-oriented programming concepts such as objects, classes, information hiding, and

inheritance;
6. give original examples of function and operator overloading and polymorphism;
7. write, test, and debug programs in the object-oriented programming language C++.

Indicative Literature

Brian Kernighan, Dennis Ritchie: The C Programming Language, 2nd edition, Prentice Hall Professional Technical
Reference, 1988.

Steve Oualline: Practical C Programming, 3rd edition, O'Reilly Media, 1997.

Bruce Eckel: Thinking in C++: Introduction to Standard C++, Prentice Hall, 2000.

Bruce Eckel, Chuck Allison: Thinking in C++: Practical Programming, Prentice Hall, 2004.

Bjarne Stroustrup: The C++ Programming Language, 4th edition, Addison Wesley, 2013.

Michael Dawson: Beginning C++ Through Game Programming, 4th edition, Delmar Learning, 2014.

Usability and Relationship to other Modules

• This module introduces the programming languages C and C++ and several other modules build on this
foundation. Certain features of C++ such as templates and generic data structures and an overview of the
standard template library will be covered in the Algorithms and Data Structures module.

Examination Type: Module Component Examinations

Component 1: Lecture

Assessment types: Written examination Duration: 120 min
 Weight: 67%
Scope: All theoretical intended learning outcomes of the module

Component 2: Tutorial

Assessment: Program Code
 Weight: 33%
Scope: All practical intended learning outcomes of the module

Completion: To pass this module, the examination of each module component has to be passed with at least 45%.

27

7.2 Algorithms and Data Structures

Module Name Module Code Level (type) CP
Algorithms and Data Structures CH-231 Year 1 (CHOICE) 7.5

Module Components

Number Name Type CP
CH-231-A Algorithms and Data Structures Lecture 7.5
Module
Coordinator

Dr. Kinga Lipskoch

Program Affiliation

• Computer Science (CS)

Mandatory Status

Mandatory for CS, RIS, and
minor in CS

Entry
Requirements

Pre-requisites

☒
Programming in C
and C++

Co-requisites

☒ None

Knowledge, Abilities, or Skills

Frequency

Annually
(Spring)

Forms of Learning and
Teaching

• Class attendance (52.5
hours)
• Independent study (115
hours)
• Exam preparation (20
hours)

Duration

1 semester

Workload

187.5 hours

Recommendations for Preparation

Students should refresh their knowledge of the C and C++ programming language and be able to solve simple programming
problems in C and C++. Students are expected to have a working programming environment.

Content and Educational Aims

Algorithms and data structures are the core of computer science. An algorithm is an effective description for calculations
using a finite list of instructions that can be executed by a computer. A data structure is a concept for organizing data in a
computer such that data can be used efficiently. This introductory module allows students to learn about fundamental
algorithms for solving problems efficiently. It introduces basic algorithmic concepts; fundamental data structures for
efficiently storing, accessing, and modifying data; and techniques that can be used for the analysis of algorithms and data
structures with respect to their computational and memory complexities. The presented concepts and techniques form the
basis of almost all computer programs.

Intended Learning Outcomes

By the end of this module, students will be able to

1. explain asymptotic (time and memory) complexities and respective notations;
2. able to prove asymptotic complexities of algorithms;
3. illustrate basic data structures such as arrays, lists, queues, stacks, trees, and hash tables;
4. describe algorithmic design concepts and apply them to new problems;
5. explain basic algorithms (sorting, searching, graph algorithms, computational geometry) and their

complexities;
6. summarize and apply C++ templates and generic data structures provided by the standard C++ template

library.
Indicative Literature

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein: Introduction to Algorithms, 3rd edition, MIT
Press, 2009.
Donald E. Knuth: The Art of Computer Programming: Fundamental Algorithms, volume 1, 3rd edition, Addison Wesley
Longman Publishing, 1997.

28

Usability and Relationship to other Modules

Familiarity with basic algorithms and data structures is fundamental for almost all advanced modules in computer science.
This module additionally introduces advanced concepts of the C++ programming language that are needed in advanced
programming-oriented modules in the 2nd and 3rd years of the CS and RIS programs.

Examination Type: Module Examination

Assessment Type: Written examination Duration: 120 min
 Weight: 100%
Scope: All intended learning outcomes of the module

Completion: To pass this module, the examination has to be passed with at least 45%

29

7.3 Mathematical Foundations of Computer Science

Module Name Module Code Level (type) CP
Mathematical Foundations of Computer Science CH-233 Year 1 (CHOICE) 7.5

Module Components

Number Name Type CP

CH-233-A Mathematical Foundations of Computer Science Lecture 5

CH-233-B Mathematical Foundations of Computer Science Tutorial Tutorial 2.5

Module
Coordinator

Prof. Dr. Jürgen
Schönwälder

Program Affiliation

• Computer Science (CS)

Mandatory Status

Mandatory for CS and SDT

Entry
Requirements

Pre-requisites

☒ None

Co-requisites

☒ None

Knowledge, Abilities, or
Skills

Frequency

Anually
(Fall)

Forms of Learning and
Teaching

• Lecture attendance (35

hours)
• Tutorial attendance

(17.5 hours)
• Independent study (115

hours)
• Exam preparation (20

hours)

Duration

1 semester

Workload

187.5 hours

Recommendations for Preparation

It is recommended that students revise mathematical concepts from their high school education.

Content and Educational Aims

The module introduces students to the mathematical foundations of computer science. Students learn to reason logically
and clearly. They acquire the skill to formalize arguments and to prove propositions mathematically using elementary
logic. Students are also introduced to fundamental concepts of graph theory and elementary graph algorithms.

After establishing the concept of algorithms, the first part covers basic elements of discrete mathematics, leading to
Boolean algebra, propositional logic, and predicate logic. Students learn how to use fundamental proof techniques to
prove (or disprove) simple propositions. The second part of the module introduces students to basic concepts of algebraic
structures like groups, rings, and fields and different structure preserving maps (homomorphisms). Students study how
these abstract concepts relate to problems in computer science. The last part of the module covers the basic elements of
graph theory and the different representation of graphs. Elementary graph algorithms are introduced that have a wide
range of applicability in computer science.

30

Intended Learning Outcomes

By the end of this module, students will be able to

1. explain basic concepts and properties of algorithms;
2. understand the concept of termination and complexity metrics;
3. illustrate basic concepts of discrete math (sets, relations, functions);
4. use basic proof techniques and apply them to prove properties of algorithms;
5. summarize basic principles of Boolean algebra and propositional logic;
6. use predicate logic and outline concepts such as validity and satisfiability;
7. distinguish abstract algebraic structures such as groups, rings and fields;
8. classify different structure preserving maps (homomorphisms);
9. understand calculations in finite fields and their applicability to computer science;
10. explain elementary concepts of graph theory and use different graph representations;

11. outline basic graph algorithms (e.g., traversal, search, spanning trees).

Indicative Literature

• Eric Lehmann, F. Thomson Leighton, Albert R. Meyer: Mathematics for Computer Science, online 2018.

• Winfried K. Grassmann, Jean-Paul Tremblay: Logic and Discrete Mathematics: A Computer Science Perspective,
Pearson, 1996

Usability and Relationship to other Modules

This module introduces key mathematical concepts and teaches students to work with mathematical abstractions that
are relevant for computer science. The acquired skills are relevant for subsequent courses covering theoretical or abstract
aspects of computer science.

Examination Type: Module Examination

Assessment Type: Written examination Duration: 120 min
 Weight: 100%
Scope: All intended learning outcomes of the module

Module achievement: 50% of ten weekly assignments correctly solved. Two additional assignments are offered during the
semester and another assignment is offered in January to makeup missing points.

Completion: To pass this module, the examination has to be passed with at least 45%.

31

7.4 Digital Systems and Computer Architecture

Module Name Module Code Level (type) CP
Digital Systems and Computer Architecture CH-234 Year 1 (CHOICE) 7.5

Module Components

Number Name Type CP

CH-234-A Digital Systems and Computer Architecture Lecture 5.0

CH-234-B Digital Systems and Computer Architecture Tutorial Tutorial 2.5

Module
Coordinator

Prof. Dr. Jürgen
Schöwälder

Program Affiliation

• Computer Science (CS)

Mandatory Status

Mandatory for CS, RIS and ECE
Mandatory elective for SDT

Entry
Requirements

Pre-requisites

☒ None

Co-requisites

☒ None

Knowledge, Abilities, or
Skills

Frequency

Anually
(Spring)

Forms of Learning and
Teaching

• Lecture attendance (35

hours)
• Tutorial attendance

(17.5 hours)
• Independent study (115

hours)
• Exam preparation (20

hours)

Duration

1 semester

Workload

187.5 hours

Recommendations for Preparation

Content and Educational Aims

The module introduces the essential hardware components of a digital computer system. Students will learn how useful
digital circuits to add numbers or to store data can be constructed out of basic logic gates. Using these building blocks,
the module will introduce how a simple processor can be constructed and how it interacts with memory systems and
other components of a computer system. Students will practice the basics of assembler programming to understand
program execution at the hardware level.

Intended Learning Outcomes

By the end of this module, students will be able to
1. Understand the architecture of a digital computer;
2. explain the representation of numbers (integers and floats);
3. summarize basic laws of Boolean algebra;
4. describe basic logic gates and which Boolean functions they implement;
5. construct and analyze basic combinational digital circuits (e.g., adder, comparator, multiplexer);
6. design and analyze basic sequential digital circuits (e.g., latches, flip-flops);
7. outline the basic structure of the von Neumann computer architecture;
8. explain the execution of machine instructions on a von Neumann computer;
9. develop simple programs in an assembler language such as the RISC-V;
10. demonstrate how function calls are executed and the role of the stack;
11. understand microarchitectural concepts and the importance of the memory hierarchy;
12. explain the purpose and principles of operation of the components of a computer system.

32

Indicative Literature

• John L Hennessy, David A. Patterson: Computer Architecture: A Quantitative Approach, 6th edition, Morgan
Kaufmann, 2017

• Sarah Harris, David Harris: Digital Design and Computer Architecture: RISC-V Edition, Morgan Kaufmann, 2021

Usability and Relationship to other Modules

This module introduces students to the digital hardware components of a computer system. Students attain an
understanding of program execution at the hardware level. Other modules requiring an understanding of program
execution at the hardware level may require this module as a prerequisite.

Examination Type: Module Examination

Assessment Type: Written examination Duration: 120 min
 Weight: 100%
Scope: All intended learning outcomes of the module

Module achievement: 50% of ten weekly assignments correctly solved. Two additional assignments are offered during
the semester and another assignment is offered in August to makeup missing points.

Completion: To pass this module, the examination has to be passed with at least 45%.

33

34

7.5 Development in JVM Languages

Module Name Module Code Level (type) CP
Development in JVM Languages SDT-103 Year 1 (CHOICE) 7.5

Module Components

Number Name Type CP

SDT-103-A Development in JVM Languages Lecture 5

SDT-103-B Development in JVM Languages Tutorials 2.5

Module
Coordinator

Prof. Dr.
Alexander
Omelchenko

Program Affiliation

• Software, Data and Technology (SDT)

Mandatory Status

Mandatory for SDT
Mandatory Elective for CS

Entry
Requirements

Pre-requisites

☒ Programming
in C and C++

Co-requisites

☒ None

Knowledge, Abilities, or
Skills

Frequency

Annually
(Spring)

Forms of Learning and
Teaching

• Lecture attendance (35

hours)
• Tutorial attendance (35

hours)
• Independent study (97.5

hours)
• Exam preparation (20

hours)
Duration

1 semester

Workload

187.5 hours

Recommendations for Preparation

Students should refresh their knowledge of the C++ and Python programming language and be able to solve simple
programming problems in C++ and Python. Students are expected to have a working programming environment.

Content and Educational Aims

In this module students will learn about the Kotlin programming language, a modern, powerful and expressive language
that is used for various purposes from android development, web development to data science. Students will learn how
to apply Kotlin to solve practical problems in software development and will learn about data types, variables and control
flow, functions, object-oriented programming, exception handling, collections and generics, lambdas, and higher-order
functions. They will also learn about the unique features of Kotlin such as null safety, extension functions and type
inference.

Educational Aims:

• To provide students with a solid foundation in the Kotlin programming language

• To teach students how to apply Kotlin to solve practical problems in software development

• To enable students to write efficient, readable and maintainable code using Kotlin

• To familiarize students with the unique features of Kotlin such as null safety, extension functions, and type
inference

35

• To prepare students for using Kotlin in Android Development.

• To give students a deeper understanding of the fundamental concepts of computer science, such as algorithms
and data structures and how they can be applied to software development.

Intended Learning Outcomes

Upon completion of this module, students will be able to
1. write, understand and debug Kotlin code effectively.
2. use the unique features of Kotlin to write readable, maintainable and expressive code.
3. use Kotlin to solve practical problems in software development.
4. design and implement object-oriented programs in Kotlin.
5. use Kotlin collections and Generics in their programs.
6. use Lambdas and Higher-Order functions in Kotlin.
7. use Kotlin for android development.
8. write efficient and optimized code using Kotlin.
9. use Kotlin for web development.
10. use Kotlin for data science.

Indicative Literature

• Venkat Subramaniam: Programming Kotlin, Pragmatic Bookshelf, 2017.

• Hadi Hariri: Kotlin in Action, Manning Publications, 2017.

• Dmitry Jemerov and Svetlana Isakova: Kotlin in Practice, JetBrains, 2016.

• Antonio Leiva: Kotlin for Android Developers, Leanpub, 2015.

• Marcin Moskala: Kotlin Programming, Packt Publishing, 2018.

Usability and Relationship to other Modules

• Familiarity with Kotlin programming language is essential for students who wish to specialize in android
development, web development or data science. This module will provide a solid foundation in Kotlin
programming, including its unique features such as null safety, extension functions, and type inference.
Additionally, this module will introduce advanced concepts of programming that are needed in advanced
programming-oriented modules in the 2nd and 3rd years of the SDT program.

Examination Type: Module Component Examinations

Component 1: Lecture

Assessment: Written examination Duration: 60 min
 Weight: 33%
Scope: All theoretical intended learning outcomes of the module

Component 2: Tutorial

Assessment: Program Code Weight: 67%

Scope: All practical intended learning outcomes of the module

Completion: To pass this module, the examination of each module component has to be passed with at least
45%.

36

7.6 Databases

Module Name Module Code Level (type) CP
Databases CO-560 Year 2 (CORE) 7.5

Module Components

Number Name Type CP

CO-560-A Databases Lecture 5

CO-560-B Databases - Project Project 2.5

Module
Coordinator

Prof. Dr. Peter
Baumann

Program Affiliation

• Computer Science (CS)

Mandatory Status

Mandatory for CS and minor
CS
Mandatory elective for RIS

Entry
Requirements

Pre-requisites

☒ Algorithms and
Data Structures

Co-requisites

☒ None

Knowledge, Abilities, or
Skills

Frequency

Annually
(Fall)

Forms of Learning and
Teaching

• Class attendance (35

hours)
• Project (97.5 hours)
• Independent Studies (35

hours)
• Exam preparation (20

hours)
Duration

1 semester

Workload

187.5 hours

Recommendations for Preparation

Working knowledge of basic data structures, such as trees, is required as well as familiarity with an object-oriented
programming language. Basic knowledge of algebra is useful. For the project work, students benefit from having basic
hands-on skills using Linux (the server platform in the project).

Content and Educational Aims

This module offers an introduction to databases, with emphasis on practically applicable knowledge and skills. The course
starts with conceptual database design using the Entity Relationship (ER) model, followed by the relational model and SQL
for querying relations. On that occasion, structures for storing relations on disk are inspected. After that, tuning
opportunities are discussed, including Normal Forms, indexing, transaction management, and views, and finally – based
on a brief look at Relational Algebra – query processing and optimization in the server. As today databases often are used
for Web services an excursion is made to inspect the server side of Web request processing in the context of databases.
This in turn prompts security considerations in databases. Concluding the relational part, the travel leads into NoSQL and
NewSQL world. This widens the perspective towards data models beyond tables and redefined transaction concepts.
Towards the semester end, OLAP datacubes are introduced as a practically important database application with special
needs, concepts, and technology.

A hands-on group project complements the theoretical aspects: on a self-chosen topic, teams of 3 – 4 students implement
the core of a web-accessible information system using python (or PHP), MariaDB, and Linux, in a guided sequence of
homework assignments.

37

Intended Learning Outcomes

By the end of this module, students will be able to

1. read and write ER diagrams;
2. design and normalize schemas for relational databases;
3. write SQL queries and understand their evaluation in a database server;
4. know common tuning methods in relational databases;
5. explain the concept of transactions and how to use transactions in application design;
6. explain core security and privacy issues in the context of databases;
7. describe differences of selected NoSQL data models and make a requirement-driven choice;
8. describe the concept of datacubes and how databases can support it;
9. develop database-backed Web-enabled information systems, considering security aspects.

Indicative Literature

• Hector Garcia-Molina, Jeffrey D. Ullman, Jennifer D. Widom: Database Systems: The Complete Book. 2nd edition,
Pearson, 2008.

• Elvis C. Foster, Shripad V. Godbole: Database Systems. O’Reilly, 2014
• Miguel Grinberg: Flask Web Development: Developing Web Applications with Python. O’Reilly, 2018
• Jon Duckett: PHP & MySQL: Server-side Web Development. Wiley, 2022

Usability and Relationship to other Modules

Databases form an indispensable part of today’s information-hungry society, and given the emphasis on practical
aspects, there is a high usability in all sectors. Among others, students can apply their knowledge in the Software
Engineering module. This module serves as a default advanced level minor module.

Examination Type: Module Component Examinations

Module Component 1: Lecture

Assessment Type: Written examination Duration: 120 min
 Weight: 67%
Scope: Intended learning outcomes #1 - #8

Module Component 2: Project

Assessment Type: Project assessment
 Weight: 33%
Scope: Intended learning outcome #9

Completion: To pass this module, the examination of each module component has to be passed with at least 45%.

38

7.7 Software Engineering

Module Name Module Code Level (type) CP
Software Engineering CO-561 Year 2 (CORE) 7.5

Module Component

Number Name Type CP

CO-561-A Software Engineering Lecture 2.5

CO-561-B Software Engineering Project Project 5

Module
Coordinator

Prof. Dr. Peter
Baumann

Program Affiliation

• Computer Science (CS)

Mandatory Status

Mandatory for CS and minor
in CS
Mandatory elective for RIS

Entry
Requirements

Pre-requisites

☒ Databases

Co-requisites

☒ None

Knowledge, Abilities, or
Skills

Frequency

Annually
(Spring)

Forms of Learning and
Teaching

• Class attendance (35

hours)
• Independent study (10

hours)
• Development work

(132.5 hours)
• Exam preparation (10

hours)

Duration

1 semester

Workload

187.5 hours

Recommendations for Preparation

Students are expected to be able to develop software using an object-oriented programming language such as C++, and
they should have access to a Linux system and associated software development tools.

Content and Educational Aims

This module is an introduction to software engineering and object-oriented software design. The lecture focuses on
software quality and the methods to achieve and maintain it in environments of "multi-person construction of multi-
version software." Based on their pre-existing knowledge of an object-oriented programming language, students are
familiarized with software architectures, design patterns and frameworks, software components and middleware, Unified
Modeling Language (UML)-based modelling, and validation by testing. Furthermore, the course addresses the more
organizational topics of project management and version control.

The lectures are accompanied by a software project in which students have to develop a software solution to a given
problem. The problem is described from the viewpoint of a customer and students working in teams have to execute a
whole software project lifecycle. The teams have to create a suitable software architecture and software design,
implement the components, and integrate the components. The teams have to ensure that basic quality requirements for
the solution and the components are defined and satisfied. The students produce various artifacts such as design
documents, source code, test cases and user documentation. All artifacts need to be maintained in a version control
system and the commits should allow the instructor and other team members to track in a meaningful way the changes
and who has been contributing them.

39

Intended Learning Outcomes

By the end of this module, students will be able to

1. understand and apply object-oriented design patterns;
2. read and write UML diagrams;
3. contrast the benefits and drawbacks of different software development models;
4. design and plan a larger software project involving a team development effort;
5. translate requirements formulated by a customer into computer science terminology;
6. evaluate the applicability of different software engineering models for a given software development

project;
7. assess the quality of a software design and its implementation;
8. apply tools that assist in the various stages of a software development process;
9. work effectively in a team toward the goals of the team.

Indicative Literature

Ian Sommerville: Software Engineering, Pearson, 2010.

Roger Pressman: Software Engineering – a Practitioner's Approach, McGraw-Hill, 2014.

Usability and Relationship to other Modules

Examination Type: Module Component Examinations

Module Component 1: Lecture

Assessment Type: Written examination Duration: 60 min
 Weight: 33%

Scope: The first three intended learning outcomes of the module (the lecture module component)

Module Component 2: Project

Assessment Type: Project Assessment
 Weight: 66%

Scope: The remaining intended learning outcomes of the module (the project module component)

Completion: To pass this module, the examination of each module component has to be passed with at least 45%.

40

7.8 Operating Systems

Module Name Module Code Level (type) CP
Operating Systems CO-562 Year 2 (CORE) 7.5

Module Components

Number Name Type CP

CO-562-A Operating Systems Lecture 7.5

Module
Coordinator

Prof. Dr. Jürgen
Schönwälder

Program Affiliation

• Computer Science (CS)

Mandatory Status

Mandatory for CS and SDT

Entry
Requirements

Pre-requisites

☒
Digital Systems
and Computer
Architecture
☒ Algorithms and
Data Structures
or Core
Algorithms and
Data Structures

Co-requisites

☒ None

Knowledge, Abilities, or
Skills
• Students are expected

to understand data
representation and
program execution at
the machine
instruction level as
covered in the
module Introduction
to Computer Science.

Frequency

Annually
(Fall)

Forms of Learning and
Teaching

• Class attendance (52.5

hours)
• Independent study (115

hours)
• Exam preparation (20

hours)

Duration

1 semester

Workload

187.5 hours

Recommendations for Preparation

Students are expected to have a working Linux installation, which allows them to compile and run sample programs
provided by the instructor and to implement their own solutions for homework assignments.

Content and Educational Aims

This module introduces concepts and principles used by operating systems to provide programming abstractions that
enable an efficient and robust execution of application programs. Students will gain an understanding of how an operating
system kernel manages hardware components and how it provides abstractions such as processes, threads, virtual
memory, file systems, and inter-process communication facilities. Students learn the principles of event-driven and
concurrent programming and the mechanisms that are necessary to solve synchronization and coordination problems,
thereby avoiding race conditions, deadlocks, and resource starvation. The Linux kernel and runtime system will be used
throughout the course to illustrate how key ideas and concepts have been implemented and how application programs
can use them.

Intended Learning Outcomes

By the end of this module, students will be able to

1. explain the differences between processes, threads, application programs, libraries, and operating system
kernels;

2. describe well-known mutual exclusion and coordination problems;
3. use semaphores to achieve mutual exclusion and solve coordination problems;
4. use mutual exclusion locks and condition variables to solve synchronization and coordination problems;
5. illustrate how deadlocks can be avoided, detected, and resolved;
6. summarize the different mechanisms to realize virtual memory and their trade-offs;
7. solve basic inter-process communication problems using signals and pipes;

41

8. use socket inter-process communication primitives;
9. multiplex I/O activities using suitable system calls and libraries;
10. describe file system programming interfaces and the design of file systems at the operating system kernel

level;
11. explain how memory mapping can improve I/O performance;
12. restate the functionality of a linker and the difference between static linking and dynamic linking;
13. outline how different device types are supported by Unix-like kernels;
14. discuss virtualization mechanisms such as containers or virtual machines.

Indicative Literature

Abraham Silberschatz, Peter B. Galvin, Greg Gagne: Applied Operating System Concepts, John Wiley, 2000.

Andrew S. Tanenbaum, Herbert Bos: Modern Operating Systems, Prentice Hall, 4th edition, Pearson, 2015.

William Stallings: Operating Systems: Internals and Design Principles, 8th edition, Pearson, 2014.

Robert Love: Linux Kernel Development, 3rd edition, Addison Wesley, 2010.

Robert Love: Linux System Programming: Talking Directly to the Kernel and C Library, 2nd edition, O'Reilly, 2013.

Usability and Relationship to other Modules

• This module enables students to write programs that make efficient use of the services provided by the
operating system kernel. This is particularly important for advanced modules on computer networks, robotics,
and embedded systems.

Examination Type: Module Examination

Assessment Type: Written examination Duration: 120 min
 Weight: 100%
Scope: All intended learning outcomes of the module

Module achievement: 50% of the assignments correctly solved

This module includes hands-on assignments so that students can develop their system programming skills. The module
achievement ensures that a sufficient level of practical system programming skills has been obtained.

Completion: To pass this module, the examination has to be passed with at least 45%

42

7.9 Machine Learning

Module Name Module Code Level (type) CP
Machine Learning CO-541 Year 2 (CORE) 5

Module Components

Number Name Type CP
CO-541-A Machine Learning Lecture 5

Module
Coordinator

Prof. Dr.
Francesco
Maurelli

Program Affiliation

• Robotics and Intelligent Systems (RIS)

Mandatory Status

Mandatory for RIS, MMDA,
PHDS, SDT and minor
Software Development,
Mandatory elective for CS

Entry
Requirements

Pre-requisites

☒ Probability
and Random
Processes

Co-requisites

☒None

Knowledge, Abilities, or
Skills
Knowledge and command
of probability theory and
methods, as in the module
“Probability and Random
Process"

Frequency

Annually
(Spring)

Forms of Learning and
Teaching

• Class attendance (35

hours)
• Private study (70 hours)
• Exam preparation (20

hours)
Duration

1 semester

Workload

125 hours

Recommendations for Preparation

None

Content and Educational Aims

Machine learning (ML) concerns algorithms that are fed with (large quantities of) real-world data, and which return a
compressed “model” of the data. An example is the “world model” of a robot; the input data are sensor data streams,
from which the robot learns a model of its environment, which is needed, for instance, for navigation. Another example
is a spoken language model; the input data are speech recordings, from which ML methods build a model of spoken
English; this is useful, for instance, in automated speech recognition systems. There exist many formalisms in which such
models can be cast, and an equally large diversity of learning algorithms. However, there is a relatively small number of
fundamental challenges that are common to all of these formalisms and algorithms. The lectures introduce such
fundamental concepts and illustrate them with a choice of elementary model formalisms (linear classifiers and regressors,
radial basis function networks, clustering, online adaptive filters, neural networks, or hidden Markov models).
Furthermore, the lectures also (re-)introduce required mathematical material from probability theory and linear algebra.

Intended Learning Outcomes

By the end of this module, students should be able to

1. understand the notion of probability spaces and random variables;
2. understand basic linear modeling and estimation techniques;
3. understand the fundamental nature of the “curse of dimensionality;”
4. understand the fundamental nature of the bias-variance problem and standard coping strategies;
5. use elementary classification learning methods (linear discrimination, radial basis function networks, multilayer

perceptrons);
6. implement an end-to-end learning suite, including feature extraction and objective function optimization with

regularization based on cross-validation.

Indicative Literature

I

I

43

T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd
edition, Springer, 2008.

S. Shalev-Shwartz, Shai Ben-David: Understanding Machine Learning, Cambridge University Press, 2014.

C. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

T.M. Mitchell, Machine Learning, Mc Graw Hill India, 2017.

Usability and Relationship to other Modules

• This module serves as a third Year Specialization module for CS major students.

• This module gives a thorough introduction to the basics of machine learning. It complements the Artificial
Intelligence module.

Examination Type: Module Examination

Assessment Type: Written examination Duration: 120 min
 Weight: 100%
Scope: All intended learning outcomes of the module

 Completion: To pass this module, the examination has to be passed with at least 45%.

44

7.10 Functional Programming

Module Name
Functional Programming

Module Code
SDT-202

Level (type)
Year 2 (CORE)

CP
5

Module Components
Number Name Type CP
SDT-202-A Functional Programming Lecture 2.5

SDT-202-B Functional Programming Tutorial Tutorial 2.5

Module Coordinator

Prof. Dr. Alexander
Omelchenko

Program Affiliation

• Software, Data and Technology (SDT)

Mandatory Status

Mandatory for Minor in
Software Development
Mandatory elective for
SDT and CS

Entry Requirements

Pre-requisites

☒ Core Algorithms and
Data Structures or
Algorithms and Data
structures

Co-requisites

☒ none

Knowledge, Abilities, or
Skills

Frequency

Annually
(Fall)

Forms of Learning and
Teaching
• Lecture attendance

(17.5 hours)
• Tutorial attendance

(17.5 hours)
• Independent study

(70 hours)
• Exam preparation (20

hours)
Duration

1 semester

Workload

125 hours

Recommendations for Preparation
It is recommended that students install a Linux system such as Ubuntu on their notebooks and that they become familiar
with basic tools such as editors (vim or emacs) and the basics of a shell. The Glasgow Haskell Compiler (GHC) will be used
for implementing Haskell programs.

Content and Educational Aims
The goal of this discipline is to provide students with a solid foundation in functional programming principles and
techniques, focusing on the theoretical knowledge and practical skills required to effectively work with functional
languages. The module explores the core concepts, language structures, syntax, and semantic constructs of functional
programming languages, emphasizing their applicability in modern software development
Content:

• Fundamentals of functional programming: lambda calculus and combinatory logic.
• Haskell programming language: syntax, semantics, standard library.
• Manage effects using applicative functors and monads.
• Type systems of functional languages.

Intended Learning Outcomes
Upon completion of this module, students will be able to

1. Collaborate effectively within a team in the IT field, utilizing project management tools, communication skills,
and software for team project activities to jointly develop projects.

2. Compare and contrast the advantages and disadvantages of the functional programming paradigm, and apply
functional programming techniques to solve applied problems using languages such as Haskell.

3. Understand and utilize the basic type systems of functional languages and their extensions with polymorphic
and recursive types to create efficient, well-structured code in a functional programming context.

4. Choose between lazy and eager evaluation strategies based on the specific requirements of a problem or
application, and implement software solutions using a functional programming paradigm.

45

5. Explain the computational model underlying functional programming and implement algorithms in functional
languages using key concepts such as immutable data structures, recursion, and pattern matching.

6. Employ generic annotations and type classes to describe interfaces and ensure static control, promoting code
reusability and maintainability in functional programming projects.

Indicative Literature
• Miran Lipovača. Learn You a Haskell for Great Good.
• O'Sullivan, Bryan, John Goerzen, and Don Stewart. Real World Haskell. O'Reilly Media, Inc., 2008
• Hughes, John. "Why functional programming matters." The computer journal 32.2 (1989): 98-107.

Usability and Relationship to other Modules
Familiarity with functional programming concepts and principles is increasingly important in fields such as data science,
artificial intelligence, and software development. This module provides a solid foundation in functional programming
techniques and languages, which are essential for advanced modules in computer science and data science. Additionally,
this module introduces advanced concepts of functional programming that are needed in advanced programming-
oriented modules in the 2nd and 3rd years of the SDT program.

Examination Type: Module Component Examination

Component 1: Lecture

Assessment: Written examination Duration: 60 min
 Weight: 50%
Scope: All theoretical intended learning outcomes of the module

Component 2: Tutorial

Assessment: Program Code Weight: 50%

Scope: All practical intended learning outcomes of the module

Completion: To pass this module, the examination of each module component has to be passed with at least
45%.

46

7.11 Automata, Computability, and Complexity

Module Name Module Code Level (type) CP
Automata, Computability, and Complexity CO-563 Year 2 (CORE) 7.5

Module Components

Number Name Type CP

CO-563-A Automata, Computability, and Complexity Lecture 7.5

Module
Coordinator

Prof. Dr. Jakob
Suchan

Program Affiliation

• Computer Science (CS)

Mandatory Status

Mandatory for CS

Entry
Requirements

Pre-requisites

☒ Mathematical
Foundations of
Computer
Science

Co-requisites

☒ None

Knowledge, Abilities, or
Skills

Frequency

Annually
(Spring)

Forms of Learning and
Teaching

• Class attendance (52.5

hours)
• Independent study (115

hours)
• Exam preparation (20

hours)

Duration

1 semester

Workload

187.5 hours

Recommendations for Preparation

None

Content and Educational Aims

This module introduces the mathematical theory of computation. Several types of abstract computational machines
(called automata) are introduced together with the associated theory of formal languages. A formal language is a set of
words over a defined alphabet that are well-formed according to a specific set of rules, called the grammar of the
language. After studying the relationship between automata models and classes of formal languages, this course
addresses the fundamental question "What problems can a computer possibly solve?'' by characterizing those solvable
problems, equivalently, through Turing machines, random access machines, recursive functions and lambda calculus. A
full answer to the related question, "How many computational resources are needed for solving a given problem?'' is not
known today. However, the basic outlines of today's theory of computational complexity will be presented up to the most
famous open problem in computer science, namely the "P = NP'' question: if a computer could guess the right answer to
a computational problem (and only needs to check its correctness), would that computer be faster than another one that
cannot guess the right solution? This may seem to be a ridiculously obvious case of a clear YES answer, but in fact it is
considered by many to be the deepest open question in contemporary mathematics (and computer science, of course).

This module provides the core education in theoretical computer science. The material covered in this module gives
students access to any field in computer science, which is based on discrete-mathematical formal foundations, such as
the theory of automata and formal languages or compiler design.

47

Intended Learning Outcomes

By the end of this module, students will be able to

1. explain discrete automata models (finite state machines, pushdown automata, Turing machines);
2. describe the Chomsky hierarchy of formal languages and classify formal languages;
3. characterize classes of formal languages by automata models and grammars;
4. define formal models of computation such as Turing machines;
5. explain the equivalences of formal models of computation;
6. illustrate the nature and impact of the Church–Turing hypothesis;
7. construct diagonalization arguments;
8. give examples of functions that are not computable;
9. contrast central complexity classes (L, P, NP, EXP, …);
10. apply reduction techniques both for decidability and complexity;
11. create a reduction-based check of whether a problem is NP-complete.

Indicative Literature

Michael Sipser: Introduction to the Theory of Computation, 2nd edition, PWS Publishing Company, 1997. (Primary
Literature).

John Hopcroft, Rajeev Motwani, Jeffrey Ullman: Introduction to Automata Theory, Languages, And Computation, 3rd
edition, Pearson, 2006.

Usability and Relationship to other Modules

• This module provides the core education in theoretical computer science.

Examination Type: Module Examination

Assessment Type: Written examination Duration: 120 min
 Weight: 100%
Scope: All intended learning outcomes of the module

Completion: To pass this module, the examination has to be passed with at least 45%

48

7.12 Legal and Ethical Aspects of Computer Science

Module Name Module Code Level (type) CP
Legal and Ethical Aspects of Computer Science CO-565 Year 2 (CORE) 2.5

Module Components

Number Name Type CP

CO-565-A Legal and Ethical Aspects of Computer Science Lecture 2.5

Module
Coordinator

Prof. Dr. Jürgen
Schönwälder

Program Affiliation

• Computer Science (CS)

Mandatory Status

Mandatory elective for CS

Entry
Requirements

Pre-requisites

☒ None

Co-requisites

☒ None

Knowledge, Abilities, or
Skills

Frequency

Annually
(Fall)

Forms of Learning and
Teaching

• Class attendance (17.5

hours)
• Private study (35 hours)
• Poster preparation (10

hours)

Duration

1 semester

Workload

62.5 hours

Recommendations for Preparation

None

Content and Educational Aims

Information technology has a profound impact on society. This module introduces the legal and ethical frameworks that
are relevant for computer scientists taking up qualified employment or joining advanced study programs leading to a
career in education and research. The module provides an overview of intellectual property rights and their regulations,
data protection regulations, and ethical frameworks defined by professional organizations. Students are confronted with
a collection of case studies to develop sensitivity to legal and ethical dilemmas with which people are sometimes faced
during the construction or operation of advanced information processing systems.

Intended Learning Outcomes

By the end of this module, students will be able to

1. recall principles of data protection regulations such as the European General Data Protection Regulation
(GDPR);

2. identify components of an IT system managing sensitive data that needs protection;
3. summarize regulations concerning intellectual property rights;
4. analyze the applicability of different closed-source and open-source software licensing models;
5. describe computer science ethics and ethical frameworks defined by professional organizations;
6. illustrate ethical dilemma resulting from the use of information processing systems;
7. discuss the interplay of legal frameworks and ethical principles and the design of information processing

systems.

Indicative Literature

Not specified.

Usability and Relationship to other Modules

49

Examination Type: Module Examination

Assessment Type: Poster presentation Duration: 10 min
 Weight: 100%
Scope: All intended learning outcomes of the module

Completion: To pass this module, the examination has to be passed with at least 45%

50

7.13 Academic Skills in Computer Science

Module Name Module Code Level (type) CP
Academic Skills in Computer Science CO-567 Year 2 (CORE) 2.5

Module Components

Number Name Type CP
CO-567-A Academic Skills in Computer Science Seminar 2.5

Module
Coordinator

Dr. Kinga
Lipskoch

Program Affiliation

• Computer Science (CS)

Mandatory Status

Mandatory elective for CS

Entry
Requirements

Pre-requisites

☒ None

Co-requisites

☒ None

Knowledge, Abilities, or
Skills

☒ None

Frequency

Annually
(Spring)

Forms of Learning and
Teaching

• Class attendance (17.5

hours)
• Private study (25 hours)
• Presentation / poster

preparation (20 hours)

Duration
1 semester

Workload
62.5 hours

Recommendations for Preparation
None

Content and Educational Aims

This module introduces students to basic skills in reading, understanding, and evaluating scientific articles, and in
presenting scientific results in presentations and publications. During the seminar, students will study some classic
computer science papers with a special focus on how the papers are organized, written and how they present scientific
results. Students will develop and discuss guidelines for effective writing and they will learn about techniques and tools
that can be used to effectively search for literature relevant to a certain topic. Finally, students will be introduced to peer
review processes.

As a project, students will emulate the workflow of a scientific conference to demonstrate the academic skills they have
learned.

Intended Learning Outcomes

By the end of this module, students will be able to

1. effectively find research literature for a given topic;
2. critically read and assess research papers;
3. present a research result in the structure of a scientific paper;
4. describe how scientific peer review processes work;
5. orally communicate research results effectively to a scientific community;
6. describe common pitfalls in the presentation of data, algorithms, or math;
7. discuss ethical issues and guidelines related to scientific publications.

Indicative Literature

Peter Zobel: Writing for Computer Science, 3rd edition, Springer, 2014.

Usability and Relationship to other Modules

51

Examination Type: Module Examination
Assessment Type: Project Assessment Weight: 100%

Scope: All intended learning outcomes of the module

Completion: To pass this module, the examination has to be passed with at least 45%

52

7.14 Computer Networks

Module Name Module Code Level (type) CP
Computer Networks CO-564 Year 3

(Specialization)
5

Module Components

Number Name Type CP

CO-564-A Computer Networks Lecture 5

Module
Coordinator

Prof. Dr. Jürgen
Schönwälder

Program Affiliation

• Computer Science (CS)

Mandatory Status

Mandatory elective for CS and
SDT

Entry
Requirements

Pre-requisites

☒
Algorithms and
Data Structures
or Core
Algorithms and
Data Structures

Co-requisites

☒ None

Knowledge, Abilities, or
Skills

Frequency

Annually
(Fall)

Forms of Learning and
Teaching

• Class attendance (35

hours)
• Private study (70 hours)
• Exam preparation (20

hours)

Duration

1 semester

Workload

125 hours

Recommendations for Preparation

Students are expected to be familiar with the C programming language and to learn basics of higher-level scripting
languages such as Python (the official Python documentation is available on https://docs.python.org/).

Content and Educational Aims

Computer networks such as the Internet play a critical role in today's connected world. This module discusses the
technology of Internet services in depth to enable students to understand the core issues involved in the design of modern
computer networks. Fundamental algorithms and principles are explained in the context of existing protocols as they are
used in today's Internet. Students taking this course should finally understand the technical complexity behind everyday
online services such as Google or YouTube.

Students taking this module will understand how computer networks work and they will be able to assess communication
networks, including aspects such as performance but also robustness and security. Students will learn that the design of
communication networks is not only influenced by technical constraints but also by the necessity to define common
standards, which often requires to take engineering decisions that reflect non-technical requirements.

Intended Learning Outcomes

By the end of this module, students will be able to

1. recall layering principles and the OSI reference model;
2. articulate the organization of the Internet and the organization involved in providing Internet services;
3. describe media access control, flow control, and congestion control mechanisms;
4. explain how local area networks differ from global networks;
5. illustrate how frames are forwarded in local area networks;

https://www.youtube.com/watch

53

6. contrast addressing mechanisms and translations between addresses used at different layers;
7. demonstrate how the Internet network layer forwards packets;
8. present how routing algorithms and protocols are used to determine and select routes;
9. describe how the Internet transport layer provides different end-to-end services;
10. demonstrate how names are resolved to addresses and vice versa;
11. summarize how application layer protocols send and access electronic mail or access resources on the

world-wide web;
12. design and implement simple application layer protocols;
13. recognize to which extent computer networks are fragile and evaluate strategies to cope with the

fragility;
14. analyze traffic traces produced by a given computer network.

Indicative Literature

James F. Kurose, Keith W. Ross: Computer Networking: A Top-Down Approach Featuring the Internet, 3rd Edition,
Addison-Wesley, 2004.

Andrew S. Tanenbaum: Computer Networks, 4th Edition, Prentice Hall, 2002.

Usability and Relationship to other Modules

• The module should be taken together with the module Operating Systems, because a significant portion of the
communication technology is implemented at the operating system level. An understanding of operating system
concepts and abstractions will help students to understand how computer network technology is commonly
implemented and made available to applications. The specialization module Distributed Algorithms discusses
algorithms for solving problems commonly found in distributed systems that use computer networks to
exchange information. The module Secure and Dependable Systems introduces cryptographic mechanisms that
can be used to secure communication over computer networks.

Examination Type: Module Examination

Assessment Type: Written examination Duration: 120 min
 Weight: 100%
Scope: All intended learning outcomes of the module

Completion: To pass this module, the examination has to be passed with at least 45%.

54

7.15 Secure and Dependable Systems

Module Name Module Code Level (type) CP
Secure and Dependable Systems CO-566 Year 3

(Specialization)
5

Module Components

Number Name Type CP

CO-566-A Secure and Dependable Systems Lecture 5

Module
Coordinator

Prof. Dr. Jürgen
Schönwälder

Program Affiliation

• Computer Science (CS)

Mandatory Status

Mandatory elective for CS

Entry
Requirements

Pre-requisites

☒
Operating
Systems

Co-requisites

☒ None

Knowledge, Abilities, or
Skills

Frequency

Annually
(Spring)

Forms of Learning and
Teaching

• Class attendance (35

hours)
• Independent study (70

hours)
• Exam preparation (20

hours)

Duration

1 semester

Workload

125 hours

Recommendations for Preparation

None

Content and Educational Aims

This module introduces students to the fundamentals of computer security and techniques used to build and analyze
dependable systems. This is an important topic given that computer systems are increasingly embedded in everyday
objects (such as light bulbs) and taking over important control functions (such as driving cars). Furthermore, computer
systems control complex communication systems that form critical infrastructure of the modern globalized world. Proper
protection of information requires an applied understanding of cryptography and how cryptographic primitives are used
to secure data and information exchanges. The aim of this module is to make students aware of what types of security
vulnerabilities may arise in computing systems and how to prevent, identify, and fix them.

Intended Learning Outcomes

By the end of this module, students will be able to

1. recall dependability terminology and concepts;
2. explain control flow attacks and injection attacks and defense mechanisms;
3. describe network data plane and control plane attacks and defense mechanisms;
4. understand symmetric and asymmetric cryptographic algorithms;
5. explain how digital signatures and public key infrastructures work;
6. analyze key exchange protocols for weaknesses;
7. describe secure network protocols (e.g., PGP, TLS, and SSH);
8. recall anonymity terminology and concepts;
9. discuss information hiding mechanisms (e.g., steganography, and watermarking);
10. illustrate anonymization techniques (mixes, onion routing);

55

Indicative Literature

Bruce Schneier: Applied Cryptography, 20th Anniversary Edition, Wiley, 2015.

Wm.A. Conklin, Gregory White: Principles of Computer Security, 5th Edition, McGraw-Hill, 2018.

Simon Singh: The Code Book: Science of Secrecy from Ancient Egypt to Quantum Cryptography, Anchor Books, 2000.

Usability and Relationship to other Modules

Examination Type: Module Examination

Assessment Type: Written examination Duration: 120 min
 Weight: 100%
Scope: All intended learning outcomes of the module

Completion: To pass this module, the examination has to be passed with at least 45%

56

7.16 Computer Graphics

Module Name Module Code Level (type) CP
Computer Graphics CA-S-CS-801 Year 3

(Specialization)
5

Module Components

Number Name Type CP
CA-CS-801 Computer Graphics Lecture 5

Module
Coordinator

Prof. Dr. Jürgen
Schönwälder

Program Affiliation

• Computer Science (CS)

Mandatory Status

Mandatory elective for CS and
RIS

Entry
Requirements

Pre-requisites

☒
Algorithms and
Data Structures
or Core
Algorithms and
Data Structures

Co-requisites

☒ None

Knowledge, Abilities, or
Skills

Frequency

Annually
(Fall)

Forms of Learning and
Teaching

• Class attendance (35

hours)
• Private study (70 hours)
• Exam preparation (20

hours)

Duration

1 semester

Workload

125 hours

Recommendations for Preparation

None

Content and Educational Aims

This module deals with the digital synthesis and manipulation of visual content. The creation process of computer graphics
spans from the creation of a three-dimensional (3D) scene to displaying or storing it digitally. Prominent tasks in computer
graphics are geometry processing, rendering, and animation. Geometry processing is concerned with object
representations such as surfaces and their modeling. Rendering is concerned with transforming a model of the virtual
world into a set of pixels by applying models of light propagation and sampling algorithms. Animation is concerned with
descriptions of objects that move or deform over time. This is an introductory module covering the concepts and
techniques of 3D (interactive) computer graphics. It covers mathematical foundations, basic algorithms and principles,
and some advanced methods and concepts. An introduction to the implementation of simple programs using a
mainstream computer graphics library completes this module.

Intended Learning Outcomes

By the end of this module, students will be able to

1. construct 3D geometry representations;
2. apply 3D transformations;
3. understand the algorithms and optimizations applied by graphics rendering systems;
4. explain the stages of modern computer graphics programmable pipelines
5. implement simple computer graphics applications using graphics frameworks such as OpenGL;
6. illustrate the techniques used to create animations.

57

Indicative Literature

John Hughes, Andries van Dam, Morgan McGuire, David F. Sklar, James D. Foley, Steven K. Feiner, Kurt Akeley, Computer
Graphics - Principles and Practice, 3rd edition, Addison-Wesley, 2013.

Peter Shirley, Steve Marschner, Fundamentals of Computer Graphics, 4th edition, Taylor and Francis Ltd, 2016.

Matt Pharr, Wenzel Jakob, Greg Humphreys, Physically Based Rendering: From Theory to Implementation, 3rd edition,
Morgan Kaufmann, 2016.

Usability and Relationship to other Modules

• Students with a strong interest in graphical user interfaces are encouraged to also select the Human–Computer
Interaction specialization module, which discusses among other things how computer graphics can be used as
a component of interactive graphical user interfaces.

Examination Type: Module Examination

Assessment Type: Written examination Duration: 120 min
 Weight: 100%

Scope: All intended learning outcomes of the module

Completion: To pass this module, the examination has to be passed with at least 45%

58

7.17 Image Processing

Module Name Module Code Level (type) CP
Image Processing CA-S-CS-802 Year 3

(Specialization)
5

Module Components

Number Name Type CP

CA-CS-802 Image Processing Lecture 5

Module
Coordinator

Prof. Dr. Jürgen
Schönwälder

Program Affiliation

• Computer Science (CS)

Mandatory Status

Mandatory elective for CS

Entry
Requirements

Pre-requisites

☒ Algorithms and
Data Structures
or Core
Algorithms and
Data Structures

Co-requisites

☒ None

Knowledge, Abilities, or
Skills

• None

Frequency

Annually
(Spring)

Forms of Learning and
Teaching

• Class attendance (35

hours)
• Private study (70 hours)
• Exam preparation (20

hours)

Duration

1 semester

Workload

125 hours

Recommendations for Preparation

None

Content and Educational Aims

The module provides a foundation of the theory and applications of digital image processing. The first part concentrates
on morphological image processing, which is one of the most basic yet powerful tool sets in dealing with digital images,
and it is the backbone of many of today's high-performance image analysis systems. The module starts by introducing
concepts such as dilation, erosion, geodesic transformations, morphological filtering, and the watershed transform. It
then develops into advanced strategies for image segmentation and texture analysis. The second part of the module will
concentrate on understanding problems from real-world applications, such as in biomedical imaging, and provides an
overview of the broader field of image processing. The course can be combined with other courses on machine learning
and signal analysis. Homework assignments will cover C/C++ implementations of basic and combined image processing
algorithms.

Intended Learning Outcomes

By the end of this module, students will be able to

1. explain the theory and concepts of image processing;
2. illustrate concepts such as dilation, erosion, geodesic transformations, and morphological filtering;
3. analyze image segmentation and texture analysis algorithms;
4. design and implement their own image processing algorithms in C/C++.

Indicative Literature

Milan Sonka, Vaclav Hlavac, Roger Boyle: Image Processing, Analysis, and Machine Vision, 3rd edition, Nelson Engineering,
2007.

Pierre Soille, Morphological Image Analysis: Principles and Applications, 2nd edition, Springer, 2004.

59

Usability and Relationship to other Modules

Examination Type: Module Examination

Assessment Type: Written examination Duration: 120 min
 Weight: 100%

Scope: All intended learning outcomes of the module

Completion: To pass this module, the examination has to be passed with at least 45%

60

7.18 Distributed Algorithms

Module Name Module Code Level (type) CP
Distributed Algorithms CA-S-CS-803 Year 3

(Specialization)
5

Module Components

Number Name Type CP

CA-CS-803 Distributed Algorithms Lecture 5

Module
Coordinator

Dr. Kinga
Lipskoch

Program Affiliation

• Computer Science (CS)

Mandatory Status

Mandatory elective for CS,
SDT and RIS

Entry
Requirements

Pre-requisites

☒ Algorithms and
Data Structures
or Core
Algorithms and
Data Structures

Co-requisites

☒ None

Knowledge, Abilities, or
Skills

Frequency

Annually
(Spring)

Forms of Learning and
Teaching

• Class attendance (35

hours)
• Private study (70 hours)
• Exam preparation (20

hours)

Duration

1 semester

Workload

125 hours

Recommendations for Preparation

None

Content and Educational Aims

Distributed algorithms are the foundation of modern distributed computing systems. They are characterized by a lack of
knowledge of a global state, a lack of knowledge of a global time, and inherent non-determinism in their execution. The
course introduces basic distributed algorithms using an abstract formal model, which is centered on the notion of a
transition system. The topics covered are logical clocks, distributed snapshots, mutual exclusion algorithms, wave
algorithms, election algorithms, reliable broadcast algorithms, and distributed consensus algorithms. Process algebras are
introduced as another formalism to describe distributed and concurrent systems.

The distributed algorithms introduced in this module form the foundation of computing systems that have to be scalable
and fault-tolerant, e.g., large-scale distributed non-standard databases or distributed file systems. The course is
recommended for students interested in the design of scalable distributed computing systems.

Intended Learning Outcomes

By the end of this module, students will be able to

1. describe and analyze distributed algorithms using formal methods such as transition systems;
2. explain different algorithms to solve election problems;
3. illustrate the limitations of time to order events and how logical clocks and vector clocks overcome these

limitations;
4. apply distributed algorithms to produce consistent snapshots of distributed computations;
5. describe the differences among wave algorithms for different topologies;
6. analyze and implement distributed consensus algorithms such as Paxos and Raft;
7. use a process algebra such as communicating sequential processes or -calculus to model distributed

algorithms.

61

Indicative Literature

Maarten van Steen, Andrew S. Tanenbaum: Distributed Systems, 3rd edition, Pearson Education, 2017.

Nancy A. Lynch: Distributed Algorithms, Morgan Kaufmann, 1996.

Usability and Relationship to other Modules

Examination Type: Module Examination

Assessment Type: Written examination Duration: 120 min
 Weight: 100%

Scope: All intended learning outcomes of the module

Completion: To pass this module, the examination has to be passed with at least 45%

62

7.19 Web Application Development

Module Name Module Code Level (type) CP
Web Application Development CA-S-CS-804 Year 3

(Specialization)
5

Module Components

Number Name Type CP
CA-CS-804-A Web Application Development Lecture 2.5
CA-CS-804-B Web Application Development - Project Project 2.5

Module
Coordinator

Prof. Dr. Jürgen
Schönwälder

Program Affiliation

• Computer Science (CS)

Mandatory Status

Mandatory elective for CS and
RIS

Entry
Requirements

Pre-requisites

☒
Databases and
Web Services

Co-requisites

☒ None

Knowledge, Abilities, or
Skills

Frequency

Annually
(Spring)

Forms of Learning and
Teaching

• Class attendance (17.5

hours)
• Private study (40 hours)
• Project work (50 hours)
• Exam preparation (17.5

hours)
Duration

1 semester

Workload

125 hours

Recommendations for Preparation

None

Content and Educational Aims

A web application is a client-server computer program where the client provides the user interface and the client side
logic runs in a web browser or as an app running on a mobile device such as a smart phone or a tablet. A key characteristic
is that more complex application logic and data storage is realized by a server offering a web application programming
interface.

This module focuses on the client side of web application and introduces technologies that can be used to implement
interactive user interfaces and client side logic. It builds on the module databases and web services, which covers the data
storage components and server side logic of web applications.

This module consists of a lecture and an associated project. The lecture component introduces programming languages
and frameworks that are widely used for implementing the client side of web applications such as Java, Kotlin, Swift,
JavaScript and frameworks built on top of them. In the project component, students develop web applications and test
them on existing and openly accessible web services.

Intended Learning Outcomes

By the end of this module, students will be able to

1. explain the document object model behind HTML and its relation to CSS;
2. discuss the principles and basic mechanisms of reactive website design;
3. analyze the interactions between web applications and web services.
4. use languages such as Java, Kotlin, or Swift to implement mobile web applications;

63

5. use web standards such as HTML, CSS, and JavaScript to implement web applications running in standard web
browsers.

Indicative Literature

Stoyan Stefanov: JavaScript Patterns, O'Reilly Media, 2010.

Alexey Soshin: Hands-on Design Patterns with Kotlin, Packt Publishing, 2018.

Alex Banks, Eve Porcello: Learning React: Functional Web Development.with React and Flux, O'Reilly, 2017.

Usability and Relationship to other Modules

Examination Type: Module Component Examinations

Module Component 1: Lecture

Assessment Type: Written examination Duration: 120 min
 Weight: 50%
Scope: First group of intended learning outcomes of the module

Module Component 2: Project

Assessment Type: Project Assessment Weight: 50%

Scope: Second group of intended learning outcomes of the module

Completion: To pass this module, the examination of each module component has to be passed with at least 45%.

64

7.20 Computer Vision

Module Name Module Code Level (type) CP
Computer Vision CO-546 Year 2 (CORE) 5

Module Components

Number Name Type CP
CO-546-A Computer Vision Lecture/lab 5

Module Coordinator

Prof. Dr. Francesco
Maurelli

Program Affiliation

• Robotics and Intelligent Systems (RIS)

Mandatory Status

Mandatory elective for CS and
RIS

Entry Requirements

Pre-requisites

☒ Mathematical and
Physical Foundations
of Robotics I
☒ Programming in
C/C++

Co-requisites
☒ None

Knowledge, Abilities, or
Skills
Basic knowledge of
robotics middleware (RIS
Lab I)

Frequency

Annually
(Fall)

Forms of Learning and
Teaching

• Class attendance (35

hours)
• Private study (70 hours)
• Exam preparation (20

hours)

Duration

1 semester

Workload

125 hours

Recommendations for Preparation

Refresh basic programming skills in MATLAB and/or Python

Content and Educational Aims

Computer Vision algorithms are used in a variety of real-world applications that include surveillance and object tracking,
3D model building (photogrammetry), and object recognition. Apart from their visual appeal, these algorithms also
represent elegant applications of linear algebra and optimization techniques. Topics covered in this course include a
recapitulation of relevant linear algebra, introduction to face-recognition, camera calibration, stitched panoramas, edge
and blob visual features, structure from motion, color-spaces, segmentation, and an introduction to object-recognition.

Intended Learning Outcomes

By the end of this module, students should be able

1. describe image formation and camera models;
2. calibrate cameras;
3. compute image histograms, and basic image processing;
4. discriminate among visual features (e.g., corner, edge, blob);
5. Properly use computer vision libraries;
6. implement computer vision applications.

Indicative Literature

D.A. Forsyth and J. Ponce, Computer Vision: A Modern Approach. 2nd edition, 2011.

R. Szeliski, Computer Vision: Algorithms and Applications, Springer, http://szeliski.org/Book, 2010.

Ma et al., An Invitation to 3 D Vision: From Images to Geometric Models, Springer, 2004.

I

I

65

Usability and Relationship to other Modules

• Giving the foundation of computer vision, this module is important for RIS project and for advanced
specialization courses.

• This module serves as a third year Specialization module for CS major students.

Examination Type: Module Examination

Assessment Type: Written examination Duration: 120 min
 Weight: 100%

Scope: All intended learning outcomes of the module

Module achievements: 50% if the assignments correctly solved

Completion: To pass this module, the examination has to be passed with at least 45%.

66

7.21 Human-Computer Interaction

Module Name Module Code Level (type) CP
Human Computer Interaction CA-S-RIS-802 Year 3

(Specialization)
5

Module Components

Number Name Type CP
CA-RIS-802 Human Computer Interaction Lecture 5

Module
Coordinator

Prof. Dr.
Francesco
Maurelli

Program Affiliation

• Robotics and Intelligent Systems (RIS)

Mandatory Status

Mandatory elective for CS and
RIS

Entry
Requirements

Pre-requisites

☒ None

Co-requisites

☒ None

Knowledge, Abilities, or
Skills

• None

Frequency

Annually
(Fall)

Forms of Learning and
Teaching

• Class attendance (35

hours)
• Private study (70 hours)
• Exam preparation (20

hours)
Duration

1 semester

Workload

125 hours

Recommendations for Preparation

None
Content and Educational Aims

Computer systems often interact with human beings. The design of a good human–computer interface is often crucial for
the acceptance and the success of a software system. Human–computer interface designs have to satisfy several
requirements such as usability, learnability, efficiency, accessibility, and safety. The module discusses the evolution of
human–computer interaction models and introduces design principles for graphical user interfaces and other types of
interaction (e.g., visual, voice, gesture). Human–computer interaction designs are often evaluated using prototypes or
mockups that can be given to test candidates to evaluate the effectiveness of the design. The module introduces
evaluation strategies as well as tools and techniques that can be used to prototype human–computer interfaces.

Intended Learning Outcomes

By the end of this module, students should be able to

1. explain the evolution of human–computer interaction models;
2. design and implement simple graphical user interfaces;
3. explain ergonomic principles guiding the design of user interfaces;
4. illustrate different types of interaction (e.g., visual, voice, gestures) and their usability aspects;
5. evaluate aspects of and tradeoffs between usability, learnability, efficiency, and safety;
6. apply scientific methods to evaluate interfaces with respect to their usability and other desirable properties;
7. use prototyping tools that can be employed to create mockups of user interfaces during the early stages of a

software project.

Indicative Literature

Alan Dix, Janet Finlay, Gregory D. Abowd, and Russell Beale: Human-Computer Interaction, 3rd edition, Pearson, 2004

Ben Shneiderman, Catherine Plaisant, Maxine Cohen, Steven Jacobs, Niklas Elmqvist, Nicholas Diakopoulos: Designing
the User Interface: Strategies for Effective Human-Computer Interaction, 6th edition, Pearson, 2016

67

Usability and Relationship to other Modules

• Students with a strong interest in graphical user interfaces are encouraged to also select the Computer Graphics
specialization module, which introduces methods and technologies for creating computer graphics and
animations.

Examination Type: Module Examination

Assessment Type: Project Assessment Duration: 120 min
 Weight: 100%
Scope: All intended learning outcomes of the module

Completion: To pass this module, the examination has to be passed with at least 45%.

68

7.22 Artificial Intelligence

Module Name Module Code Level (type) CP
Artificial Intelligence CO-547 Year 2 (CORE) 5

Module Components

Number Name Type CP
CO-547-A Artificial Intelligence Lecture 5

Module
Coordinator

Prof. Dr. Andreas
Birk

Program Affiliation

• Robotics and Intelligent Systems (RIS)

Mandatory Status

Mandatory for RIS, minor RIS
Mandatory elective for CS
and SDT

Entry
Requirements

Pre-requisites

☒ Algorithms and
data structures or
Core Algorithms
and Data
Structures

Co-requisites

☒ None

Knowledge, Abilities, or
Skills

Frequency

Annually
(Spring)

Forms of Learning and
Teaching

• Class attendance (35

hours)
• Private study (70 hours)
• Exam preparation (20

hours)
Duration

1 semester

Workload

125 hours

Recommendations for Preparation

Revise content of the pre-requisite modules.

Content and Educational Aims

Artificial Intelligence (AI) is an important subdiscipline of Computer Science that deals with technologies to automate the
performance of tasks that are usually associated with intelligence. AI methods have a significant application potential, as
there is an increasing interest and need to generate artificial systems that can carry out complex missions in unstructured
environments without permanent human supervision. The module teaches a selection of the most important methods in
AI. In addition to general-purpose techniques and algorithms, it also includes aspects of methods that are especially
targeted for physical systems such as intelligent mobile robots or autonomous cars.

Intended Learning Outcomes

By the end of this module, students should be able to

1. outline and explain the history, general developments, and application areas of AI;
2. apply the basic concepts and methods of behavior-oriented AI;
3. use concepts and methods of search algorithms for problem-solving;
4. explain the basic concepts of path-planning as an application example for domain-specific search;
5. apply basic path-planning algorithms and to compare their relations to general search algorithms;
6. write and explain concepts of propositional and first-order logic;
7. use logic representations and inference for basic examples of artificial planning systems.

Indicative Literature

S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, 2009.

S. M. LaValle, Planning Algorithms. Cambridge University Press, 2006.

J.-C. Latombe, Robot Motion Planning, Springer, 1991.

69

Usability and Relationship to other Modules

• This module gives an introduction to Artificial Intelligence (AI) excluding the aspects of machine learning (ML),
which are covered in a dedicated module that complements this one.

Examination Type: Module Examination

Assessment Type: Written examination Duration: 120 min
 Weight: 100%
Scope: All intended learning outcomes of the module

Completion: To pass this module, the examination has to be passed with at least 45%.

70

7.23 Robotics

Module Name Module Code Level (type) CP
Robotics CO-540 Year 2 (CORE) 5

Module Components

Number Name Type CP

CO-540-A Robotics Lecture 5

Module
Coordinator

Prof. Dr. Andreas
Birk

Program Affiliation

• Robotics and Intelligent Systems (RIS)

Mandatory Status

Mandatory for RIS and minor
RIS
Mandatory elective for CS

Entry
Requirements

Pre-requisites

☒ Programming
in C/C++
☒ Mathematical
and Physical
Foundations of
Robotics I

Co-requisites

☒ None

Knowledge, Abilities, or
Skills

Frequency

Annually
(Fall)

Forms of Learning and
Teaching

• Class attendance (35

hours)
• Private study (70 hours)
• Exam preparation (20

hours)
Duration

1 semester

Workload

125 hours

Recommendations for Preparation

Revise content of the pre-requisite modules.

Content and Educational Aims

Robotics is an area that is driven by dreams from science fiction and the reality of engineering. The module intends to
provide an understanding of the formal foundations of this area as well as its technological state of the art and future
directions. The course accordingly gives an introduction to the core algorithmic, mathematical, and engineering concepts
and methods of robotics. This includes concepts and methods that are used for well-established tools of factory
automation, especially in the form of robot-arms, as well as increasingly relevant intelligent mobile systems such as
autonomous cars or autonomous transport systems.

Intended Learning Outcomes

By the end of this module, students should be able to

1. outline and explain the history, general developments, and application areas of robotics;
2. apply the concepts and methods to describe space and motions therein including homogeneous

coordinates and transforms as well as quaternions;
3. use the spatial concepts and methods for the forward kinematics (FK) of robot-arms;
4. explain basic concepts of simple actuators, including electrical motors and gear systems;
5. apply concepts and methods to derive the inverse kinematics of robot-arms and related systems such as

legs in analytical and numerical forms;
6. apply concepts and methods of wheeled locomotion including FK and IK of the differential and of the

omni-directional drive;
7. use basic concepts and methods of dynamics;
8. Explain and use core concepts and methods of global localization, e.g., multilateration and

multidimensional scaling;
9. use the basic concepts and methods of error propagation estimation in the context of relative localization

with dead-reckoning;

71

10. outline and compare the basic concepts and methods of mapping.

Indicative Literature

J. J. Craig, Introduction to robotics - Mechanics and control, Prentice Hall, 2005.
G. Dudek and M. Jenkin, Computational Principles of Mobile Robotics, Cambridge University Press, 2000.
R. Siegwart and I. R. Nourbakhsh, Introduction to Autonomous Mobile Robots, The MIT Press, 2004.
S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics, MIT Press, 2005.
H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki, and S. Thrun, Principles of Robot Motion, MIT
Press, 2005.

Usability and Relationship to other Modules

• This module gives an introduction to Robotics, which is a core discipline of Robotics and Intelligent System
(RIS) and an important area of possible future employment.

Examination Type: Module Examination

Assessment Type: Written examination Duration: 120 min
 Weight: 100%
Scope: All intended learning outcomes of the module

Completion: To pass this module, the examination has to be passed with at least 45%.

72

7.24 Digital Design

Module Name Module Code Level (type) CP
Digital Design CA-S-ECE-803 Year 3

(Specialization)
5

Module Components

Number Name Type CP
CA-ECE-803 Digital Design Lecture/Lab 5

Module
Coordinator

Dr. Fangning Hu

Program Affiliation

• Electrical and Computer Engineering (ECE)

Mandatory Status

Mandatory elective for CS, ECE
and RIS

Entry
Requirements

Pre-requisites

☒ None

Co-requisites

☒ None

Knowledge, Abilities, or
Skills

Frequency

Annually
(Fall)

Forms of Learning and
Teaching

• Lecture/Lab (35 hours)
• Private study (90 hours)

Duration

1 semester

Workload

125 hours

Recommendations for Preparation

Students may prepare themselves with books like “Brent E. Nelson, Designing Digital Systems, 2005” and “Pong P. Chu,
RTL Hardware Design Using VHDL, A John Wiley & Sons, Inc, Publication, 2006”

Content and Educational Aims

The current trend of digital system design is towards hardware description languages (HDLs) that allow compact
description of very complex hardware constructs. The module provides a sound introduction to basic components of a
digital system such as logic gates, multiplexers, decoders, flip-flops and registers as well as VHDLs such as types, signals,
sequential and concurrent statements. Methods and principle of designing complex digital systems such as finite state
machines, hierarchical design, pipelined design, RTL design methodology and parameterized design will also be
introduced. Students will learn VHDL for programming FPGA boards to realize small digital systems in hardware (i.e. on
FPGA boards). Such digital systems could be adders, multiplexers, control units, multipliers, asynchronous serial
communication modules (UART). At the end of the module, the students should be able to design a simple digital system
by VHDL on an FPGA board.

Intended Learning Outcomes

By the end of this module, students will be able to

1. understand the principle of digital system design based on standard building blocks and components;
2. design a complex digital system;
3. understand the limitations of a given hardware platform (here FPGAs), modify algorithms where necessary,

and structure them suitably in order to optimize performance and complexity;
4. use a typical development system;
5. program in VHDL;
6. program an FPGA board.

Indicative Literature

Brent E. Nelson, Designing Digital Systems with SystemVerilog, 2018, ISBN-13: 978-1980926290

Pong P. Chu, RTL Hardware Design Using VHDL, Wiley-IEEE Press, 2006, ISBN-13: 978-0471720928

73

Usability and Relationship to other Modules

• This module introduces how to design digital systems and how to realize them on a FPGA board which could also
serve as a specialization module for students from Computer Science and Robotics and Intelligent Systems.

Examination Type: Module Examination

Assessment Type: Written examination Duration: 120 min
Scope: All intended learning outcomes of the module Weight: 100%

Completion: To pass this module, the examination has to be passed with at least 45%.

74

7.25 Information Theory

Module Name Module Code Level (type) CP
Information Theory CO-525 Year 2 (CORE) 5

Module Components

Number Name Type CP
CO-525-A Information Theory Lecture 5

Module
Coordinator

Prof. Dr.-Ing.
Werner Henkel

Program Affiliation

- Electrical and Computer Engineering (ECE)

Mandatory Status

Mandatory for ECE
Mandatory elective for CS, PHDS
and RIS

Entry
Requirements

Pre-requisites

☒ None

Co-requisites

☒ None

Knowledge, Abilities, or
Skills

Signals and Systems
contents, such as DFT and
convolution
Notion of probability,
combinatorics basics as
taught in Methods module
“Probability and Random
Processes"

Frequency

Annually
(Spring)

Forms of Learning and Teaching

• Lectures (35 hours)
• Private Study (90 hours)

Duration

1 semester

Workload

125 hours

Recommendations for Preparation

Some basic knowledge of communications and sound understanding of probability is recommended. Hence, it is strongly
advised to take the methods and skills course Probability and Random Processes prior to this module. Nevertheless,
probability basics will also be revised within the module.

Content and Educational Aims

Information theory serves as the most important foundation for communication systems. The module provides an
analytical framework for modeling and evaluating point-to-point and multi-point communication. After a short rehearsal
of probability and random variables and some excursion to random number generation, the key concept of information
content of a signal source and information capacity of a transmission medium are precisely defined, and their relationships
to data compression algorithms and error control codes are examined in detail. The module aims to install an appreciation
for the fundamental capabilities and limitations of information transmission schemes and to provide the mathematical
tools for applying these ideas to a broad class of communications systems.
The module contains also a coverage of different source-coding algorithms like Huffman, Lempel-Ziv-(Welch), Shannon-
Fano-Elias, Arithmetic Coding, Runlength Encoding, Move-to-Front transform, PPM, and Context Tree Weighting. In
Channel coding, finite fields, some basic block and convolutional codes, and the concept of iterative decoding will be
introduced. Aside from source and channel aspects, an introduction to security is given, including public-key cryptography.
Information theory is a standard module in every communications-oriented Bachelor’s program.

75

Intended Learning Outcomes

By the end of this module, students should be able to

1. explain what is understood as the information content of data and the corresponding limits of data compression
algorithms;

2. design and apply fundamental algorithms in data compression;

3. explain the information theoretic limits of data transmission;

4. apply the mathematical basics of channel coding and cryptography;

5. implement some channel coding schemes;

6. differentiate the principles of encryption and authentication schemes and implement discussed procedures.

Indicative Literature

Thomas M. Cover, Joy A. Thomas, Elements of Information Theory, 2nd ed., Wiley, Sept. 2006.

David Salomon, Data Compression, The Complete Reference, 4th ed., Springer, 2007.

Usability and Relationship to other Modules

• Although not a mandatory prerequisite, this module is ideally taken before Coding Theory (CA-ECE-802)
• All communications-related modules are naturally based on information theory
• Students from Computer Science or related programs, also students taking Bio-informatics modules, profit from

information-theoretic knowledge and source coding (compression) algorithms. Students from Computer Science
would also be interested in the algebraic basics for error-correcting codes and cryptology, fields which area also
introduced shortly.

Examination Type: Module Examination

Assessment Type: Written examination Duration: 120 min
 Weight: 100%
Scope: All intended learning outcomes of the module.

Completion: To pass this module, the examination has to be passed with at least 45%.

76

7.26 Parallel and Distributed Computing

Module Name Module Code Level (type) CP
Parallel and Distributed Computing MDE-CS-02 Year 2

(Elective)
5

Module Components

Number Name Type CP

MDE-CS-02 Parallel and Distributed Computing Lecture 5

Module Coordinator

Prof. Dr. Stefan
Kettemann

Program Affiliation

▪ MSc Data Engineering (DE)

Mandatory Status

Mandatory elective for CSSE,
DE, CS (BSc) and RIS (BSc)

Entry Requirements

Pre-requisites

Co-requisites

☒ None

Knowledge, Abilities, or
Skills

Basic knowledge in C/C++
Mandatory proficiency in
Python

Frequency

Annually
(Fall)

Forms of Learning and
Teaching

▪ Lecture (35 hours)
▪ Private study (90

hours)
Duration

1 semester

Workload

125 hours

Recommendations for Preparation
If no knowledge in C/C++ is present, interested students are encouraged get a basic understanding of C/C++ (via online
material) in order to better understand some of the discussed concepts.

Content and Educational Aims

In the recent years, the development of parallel and cloud computing has opened the door for Big Data analysis and
processing. This module aims at providing an overview and introduction to the vast field of parallel and cloud computing. In
traditional parallel computing, we aim to develop notions for different parallelization models
(shared-memory,distributed-memory, SIMD, SIMT), get to know appropriate programming methodologies for high
performance dataanalysis (OpenMP / MPI) and aim at understanding performance and scalability in this field (weak vs.
strong scaling, Amdahl’s law).This fundamental knowledge will then be carried over to recent developments in cloud
computing, where distributed processing frameworks (Spark / Hadoop MapReduce / Dask), based on appropriated
deployment infrastructures, are in the process to become De Facto standards for Big Data processing and analysis. We will
approach these technologies from a practical point of view and aim at developing the necessary knowledge to carry out
scalable machine learning and data processing on Big Data.

Intended Learning Outcomes

By the end of this module, students should be able to

1. understand theory and fundamentals of parallelization models (shared-/distributed memory, SIMD, SIMT)
2. explain and apply parallel programming methodologies (OpenMP / MPI)
3. describe and analyze performance and scalability (weak vs. strong scaling, ...)
4. Understand basic principles of distributed and cloud computing
5. use distributed processing frameworks (Spark / Hadoop MapReduce / Dask) for scalable distributed calculations
6. develop scalable machine learning and data processing on Big Data

Indicative Literature

Zaccone, Python Parallel Programming Cookbook, O'Reilly.

J.C. Daniel, Data Science with Python and Dask, Manning Publications.

Z. Radtka, D. Miner, Hadoop with Python. Hadoop with Python, O'Reilly.

77

Usability and Relationship to other Modules

N.A.
Examination Type: Module Examination

Assessment Type: Written Examination Duration: 120 minutes
 Weight: 100%

Scope: All intended learning outcomes of this module.

Completion: To pass this module, the examination has to be passed with at least 45%.

78

7.27 Internship / Startup and Career Skills

Module Name Module Code Level (type) CP
Internship / Startup and Career Skills CA-INT-900 Year 3

(CAREER)
15

Module Components

Number Name Type CP
CA-INT-900-0 Internship Internship 15

Module
Coordinator

Clémentine
Senicourt &
Dr. Tanja Woebs
(CSC
Organization);
SPC / Faculty
Startup
Coordinator
(Academic
responsibility)

Program Affiliation

• CAREER module for undergraduate study programs

Mandatory Status

Mandatory for all undergraduate
study programs except IEM

Entry
Requirements

Pre-requisites

☒ at least 15 CP
from CORE
modules in the
major

Co-requisites

☒ None

Knowledge, Abilities, or
Skills

• Information provided

on CSC pages (see
below)

• Major specific
knowledge and skills

Frequency

Annually
(Spring/Fall)

Forms of Learning and Teaching

• Internship/Start-up
• Internship event
• Seminars, info-sessions,

workshops and career
events

• Self-study, readings, online
tutorials

Duration
 1 semester

Workload

375 Hours consisting of:
• Internship (308 hours)
• Workshops (33 hours)
• Internship Event (2 hours)
• Self-study (32 hours)

Recommendations for Preparation

• Please see the section “Knowledge Center” at JobTeaser Career Center for information on Career Skills seminar and

workshop offers and for online tutorials on the job market preparation and the application process. For more
information, please see https://constructor.university/student-life/career-services

• Participating in the internship events of earlier classes

Content and Educational Aims

The aims of the internship module are reflection, application, orientation, and development: for students to reflect on their
interests, knowledge, skills, their role in society, the relevance of their major subject to society, to apply these skills and this
knowledge in real life whilst getting practical experience, to find a professional orientation, and to develop their personality
and in their career. This module supports the programs’ aims of preparing students for gainful, qualified employment and the
development of their personality.

The full-time internship must be related to the students’ major area of study and extends lasts a minimum of two consecutive
months, normally scheduled just before the 5th semester, with the internship event and submission of the internship report
in the 5th semester. Upon approval by the SPC and SCS, the internship may take place at other times, such as before teaching

79

starts in the 3rd semester or after teaching finishes in the 6th semester. The Study Program Coordinator or their faculty
delegate approves the intended internship a priori by reviewing the tasks in either the Internship Contract or Internship
Confirmation from the respective internship institution or company. Further regulations as set out in the Policies for Bachelor
Studies apply.

Students will be gradually prepared for the internship in semesters 1 to 4 through a series of mandatory information sessions,
seminars, and career events.
The purpose of the Career Services Information Sessions is to provide all students with basic facts about the job market in
general, and especially in Germany and the EU, and services provided by the Student Career Support.
In the Career Skills Seminars, students will learn how to engage in the internship/job search, how to create a competitive
application (CV, Cover Letter, etc.), and how to successfully conduct themselves at job interviews and/or assessment centers.
In addition to these mandatory sections, students can customize their skill set regarding application challenges and their
intended career path in elective seminars.
Finally, during the Career Events organized by the Career Service Center(e.g. the annual Constructor Career Fair and single
employer events on and off campus), students will have the opportunity to apply their acquired job market skills in an actual
internship/job search situation and to gain their desired internship in a high-quality environment and with excellent
employers.

As an alternative to the full-time internship, students can apply for the StartUp Option. Following the same schedule as the
full-time internship, the StartUp Option allows students who are particularly interested in founding their own company to
focus on the development of their business plan over a period of two consecutive months. Participation in the StartUp Option
depends on a successful presentation of the student’s initial StartUp idea. This presentation will be held at the beginning of
the 4th semester. A jury of faculty members will judge the student’s potential to realize their idea and approve the participation
of the students. The StartUp Option is supervised by the Faculty StartUp Coordinator. At the end of StartUp Option, students
submit their business plan. Further regulations as outlined in the Policies for Bachelor Studies apply.

The concluding Internship Event will be conducted within each study program (or a cluster of related study programs) and will
formally conclude the module by providing students the opportunity to present on their internships and reflect on the lessons
learned within their major area of study. The purpose of this event is not only to self-reflect on the whole internship process,
but also to create a professional network within the academic community, especially by entering the Alumni Network after
graduation. It is recommended that all three classes (years) of the same major are present at this event to enable networking
between older and younger students and to create an educational environment for younger students to observe the “lessons
learned” from the diverse internships of their elder fellow students.
Intended Learning Outcomes

By the end of this module, students should be able to

1. describe the scope and the functions of the employment market and personal career development;
2. apply professional, personal, and career-related skills for the modern labor market, including self-organization,

initiative and responsibility, communication, intercultural sensitivity, team and leadership skills, etc.;
3. independently manage their own career orientation processes by identifying personal interests, selecting

appropriate internship locations or start-up opportunities, conducting interviews, succeeding at pitches or
assessment centers, negotiating related employment, managing their funding or support conditions (such as
salary, contract, funding, supplies, work space, etc.);

4. apply specialist skills and knowledge acquired during their studies to solve problems in a professional environment
and reflect on their relevance in employment and society;

5. justify professional decisions based on theoretical knowledge and academic methods;
6. reflect on their professional conduct in the context of the expectations of and consequences for employers and

their society;
7. reflect on and set their own targets for the further development of their knowledge, skills, interests, and values;
8. establish and expand their contacts with potential employers or business partners, and possibly other students

and alumni, to build their own professional network to create employment opportunities in the future;
9. discuss observations and reflections in a professional network.

80

Indicative Literature

Not specified

Usability and Relationship to other Modules

• This module applies skills and knowledge acquired in previous modules to a professional environment and provides an
opportunity to reflect on their relevance in employment and society. It may lead to thesis topics.

Examination Type: Module Examination

Assessment Type: Internship Report or Business Plan and Reflection Length: approx. 3.500 words
Scope: All intended learning outcomes Weight: 100%

81

7.28 Bachelor Thesis and Seminar

Module Name Module Code Level (type) CP

Bachelor Thesis and Seminar CS CA-CS-800 Year 3 (CAREER) 15

Module Components

Number Name Type CP

CA-CS-800-T Thesis CS Thesis 12

CA-CS-800-S Thesis Seminar CS Seminar 3

Module
Coordinator

Study Program
Chair

Program Affiliation

• All undergraduate programs

Mandatory Status

Mandatory for all
undergraduate programs

Entry
Requirements

Pre-requisites

☒ Students must
have taken and
successfully
passed a total of
at least 30 CP
from advanced
modules, and of
those, at least 20
CP from
advanced
modules in the
major.

Co-requisites

☒ None

Knowledge, Abilities, or
Skills

comprehensive knowledge
of the subject and deeper
insight into the chosen
topic;
ability to plan and
undertake work
independently;
skills to identify and
critically review literature.

Frequency

Annually
(Spring)

Forms of Learning and
Teaching

• Self-study/lab work (350
hours)

• Seminars (25 hours)

Duration

14-week lecture
period

Workload

375 hours

Recommendations for Preparation

• Identify an area or a topic of interest and discuss this with your prospective supervisor in a timely manner.
• Create a research proposal including a research plan to ensure timely submission.
• Ensure you possess all required technical research skills or are able to acquire them on time.
• Review the University’s Code of Academic Integrity and Guidelines to Ensure Good Academic Practice.

Content and Educational Aims

This module is a mandatory graduation requirement for all undergraduate students to demonstrate their ability to address
a problem from their respective major subject independently using academic/scientific methods within a set time frame.
Although supervised, this module requires students to be able to work independently and systematically and set their
own goals in exchange for the opportunity to explore a topic that excites and interests them personally and that a faculty
member is interested in supervising. Within this module, students apply their acquired knowledge about their major
discipline and their learned skills and methods for conducting research, ranging from the identification of suitable (short-
term) research projects, preparatory literature searches, the realization of discipline-specific research, and the
documentation, discussion, interpretation, and communication of research results.

This module consists of two components, an independent thesis and an accompanying seminar. The thesis component
must be supervised by a Constructor University faculty member and requires short-term research work, the results of
which must be documented in a comprehensive written thesis including an introduction, a justification of the methods,
results, a discussion of the results, and a conclusion. The seminar provides students with the opportunity to practice their
ability to present, discuss, and justify their and other students’ approaches, methods, and results at various stages of their

82

research in order to improve their academic writing, receive and reflect on formative feedback, and therefore grow
personally and professionally.

Intended Learning Outcomes

On completion of this module, students should be able to

1. independently plan and organize advanced learning processes;
2. design and implement appropriate research methods, taking full account of the range of alternative

techniques and approaches;
3. collect, assess, and interpret relevant information;
4. draw scientifically-founded conclusions that consider social, scientific, and ethical factors;
5. apply their knowledge and understanding to a context of their choice;
6. develop, formulate, and advance solutions to problems and debates within their subject area, and defend

these through argument;
7. discuss information, ideas, problems, and solutions with specialists and non-specialists.

Usability and Relationship to other Modules

• This module builds on all previous modules in the undergraduate program. Students apply the knowledge,
skills, and competencies they have acquired and practiced during their studies, including research methods
and their ability to acquire additional skills independently as and if required.

Indicative Literature

Justin Zobel, Writing for Computer Science, 3rd edition, Springer, 2015.

Examination Type: Module Component Examinations

Module Component 1: Thesis
Assessment type: Thesis
Scope: All intended learning outcomes, mainly 1-6.

Module Component 2: Seminar

Length: approx. 6.000 – 8.000 words (15 – 25 pages),
excluding front and back matter.
Weight: 80%

Assessment type: Presentation Duration: approx. 15 to 30 minutes
 Weight: 20%

Scope: The presentation focuses mainly on ILOs 6 and 7, but by nature of these ILOs it also touches on the others.

Completion: To pass this module, the examination of each module component has to be passed with at least 45%.

Two separate assessments are justified by the size of this module and the fact that the justification of solutions to
problems and arguments (ILO 6) and discussion (ILO 7) should at least have verbal elements. The weights of the types of
assessments are commensurate with the sizes of the respective module components.

83

8 CONSTRUCTOR Track Modules

8.1 Methods Modules

 Elements of Linear Algebra

Module Name Module Code Level (type) CP
Elements of Linear Algebra CTMS-MAT-24 Year 1 (Methods) 5

Module Components

Number Name Type CP

CTMS-24 Elements of Linear Algebra Lecture 5

Module Coordinator

Dr. Keivan Mallahi
Karai

Program Affiliation

• CONSTRUCTOR Track Area

Mandatory Status
Mandatory elective for CS,
RIS and SDT

Entry Requirements

Pre-requisites

☒ None

Co-requisites

☒ None

Knowledge, Abilities, or
Skills

Knowledge of Pre-
Calculus at High School
level (Functions, inverse
functions, sets, real
numbers, trigonometric
functions, parametric
equations, tangent lines,
graphs, elementary
methods for solving
systems of linear and
nonlinear equations)
Knowledge of Analytic
Geometry at High
School level (vectors,
lines, planes, reflection,
rotation, translation,
dot product, cross
product, normal vector,
polar coordinates)

Frequency

Annually
(Fall)

Forms of Learning and
Teaching

• Lectures (35 hours)
• Private study (90

hours)
Duration

1 semester

Workload

125 hours

Recommendations for Preparation

Review all of higher-level High School Mathematics, in particular the topics explicitly named in “Entry Requirements –
Knowledge, Ability, or Skills” above.
Content and Educational Aims

This module is the first in a sequence introducing mathematical methods at the university level in a form relevant for
study and research in the quantitative natural sciences, engineering, Computer Science. The emphasis in these modules
is on training operational skills and recognizing mathematical structures in a problem context. Mathematical rigor is used
where appropriate. However, a full axiomatic treatment of the subject is provided in the first-year modules “Analysis” and
“Linear Algebra”.

8.1.1

84

The lecture comprises the following topics

• Review of elementary analytic geometry
• Vector spaces, linear independence, bases, coordinates
• Matrices and matrix algebra
• Solving linear systems by Gauss elimination, structure of general solution
• LU decomposition and matrix inverse
• Linear maps and connection to matrices
• Determinant
• Eigenvalues and eigenvectors
• Hermitian and skew-Hermitian matrices
• Orthonormal bases, Gram-Schmidt orthonormalization and QR decomposition
• Fourier transform
• Singular value decomposition
• Principal Component Analysis and best low rank approximations

Intended Learning Outcomes
By the end of the module, students will be able to

1. apply the methods described in the content section of this module description to the extent that they can solve

standard text-book problems reliably and with confidence;
2. recognize the mathematical structures in an unfamiliar context and translate them into a mathematical problem

statement;
3. recognize common mathematical terminology and concepts used in textbooks and research papers in computer

science, engineering, and mathematics to the extent that they fall into the content categories covered in this module.
4. independently prove results which are direct consequences of those proved in the lectures;
5. understand and use fundamental mathematical terminology to communicate mathematical ideas.

Indicative Literature

• Gilbert Strang, Introduction to Linear Algebra, Fifth Edition (2016)
• S.A. Leduc Linear Algebra. Hoboken: Wiley (2003)

Usability and Relationship to other Modules

• A rigorous treatment of this topic is provided in the module “Linear Algebra.”

Examination Type: Module Examination

Assessment type: Written examination Duration: 120 min
 Weight: 100%

Scope: All intended learning outcomes of this module

Completion: To pass this module, the examination has to be passed with at least 45%.

85

 Elements of Calculus

Module Name Module
Code

Level (type) CP

Elements of Calculus CTMS-
MAT-25

Year 1
(Methods)

5

Module Components

Number Name Type CP

CTMS-25 Elements of Calculus Lecture 5

Module
Coordinator

Dr. Keivan
Mallahi Karai

Program Affiliation

• CONSTRUCTOR Track Area

Mandatory Status

Mandatory
elective for CS, RIS
and SDT

Entry
Requirements

Pre-requisites

☒

Co-
requisites

☒ None

Knowledge, Abilities, or Skills

Knowledge of Pre-Calculus at High School level
(Functions, inverse functions, sets, real numbers,
polynomials, rational functions, trigonometric
functions, logarithm and exponential function,
parametric equations, tangent lines, graphs.
Knowledge of Analytic Geometry at High School level
(vectors, lines, planes, reflection, rotation, translation,
dot product, cross product, normal vector, polar
coordinates)
Some familiarity with elementary Calculus (limits,
derivative) is helpful, but not strictly required.

Frequency

Annually
(Spring)

Forms of Learning
and Teaching

• Lectures (35

hours)
• Private study

(90 hours)
Duration

1 semester

Workload

125 hours

Recommendations for Preparation

Review the content of Linear Algebra

Content and Educational Aims

This module is the second in a sequence introducing mathematical methods at the university level in a form relevant for
study and research in the quantitative natural sciences, engineering, Computer Science. The emphasis in these modules
is on training operational skills and recognizing mathematical structures in a problem context. Mathematical rigor is used
where appropriate. However, a full axiomatic treatment of the subject is provided in the first-year modules “Analysis”.

The lecture comprises the following topics

• Sets, basic operations, and relations
• Functions, basic operations, compositions of functions, graphs of functions
• Brief introduction to real and complex numbers
• Limits for sequences and functions
• Continuity
• Derivatives of functions and its geometric interpretations
• Computing derivatives: linearity, product rule, chain rule
• Applications of derivatives, optimization for one-variable functions
• Introduction to Integration and the Fundamental Theorem of Calculus
• Differential equations, modeling simple dynamical systems
• Discrete derivative, summations, difference equations
• Functions of several variables, representations using graphs and level curves
• Basic ideas of multivariable calculus
• Partial derivatives and directional derivatives, total derivative
• Optimization in several variables, gradient descent, Lagrange multipliers

8.1.2

86

• Ordinary differential equations with several variables, simple examples
• Linear constant-coefficient ordinary differential equations
• Fourier series and their applications

Intended Learning Outcomes
By the end of the module, students will be able to

1. apply the methods described in the content section of this module description to the extent that they can solve

standard text-book problems reliably and with confidence;
2. recognize the mathematical structures in an unfamiliar context and translate them into a mathematical problem

statement;
3. recognize common mathematical terminology and concepts used in textbooks and research papers in computer

science, engineering, and mathematics to the extent that they fall into the content categories covered in this module.
4. independently prove results which are direct consequences of those proved in the lectures;
5. understand and use fundamental mathematical terminology to communicate mathematical ideas.

Indicative Literature

• James Stewart, Calculus: Early Transcendentals, (2015)
• S.I. Grossman, Calculus of one variable, 2nd edition, (2014)

Usability and Relationship to other Modules

• A rigorous treatment of this topic is provided in the module “Analysis”.

Examination Type: Module Examination

Assessment type: Written examination Duration: 120 min
 Weight: 100%

Scope: All intended learning outcomes of this module

Completion: To pass this module, the examination has to be passed with at least 45%.

87

 Probability and Random Processes

Module Name Module Code Level (type) CP
Probability and Random Processes CTMS-MAT-12 Year 2

(Methods)
5

Module Components

Number Name Type CP

CTMS-12 Probability and random processes Lecture 5

Module Coordinator

Dr. Keivan Mallahi
Karai

Program Affiliation

• CONSTRUCTOR Track Area

Mandatory Status

Mandatory for CS, SDT,
ECE, MMDA, PHDS and
RIS

Entry Requirements

Pre-requisites

☒ Matrix Algebra
and Advanced
Calculus II or
Elements of Algebra
and Elements of
Calculus

Co-requisites

☒ None

Knowledge, Abilities, or Skills

Knowledge of calculus at the
level of a first year calculus
module (differentiation,
integration with one and
several variables,
trigonometric functions,
logarithms and exponential
functions).
Knowledge of linear algebra at
the level of a first-year
university module
(eigenvalues and eigenvectors,
diagonalization of matrices).
Some familiarity with
elementary probability theory
at the high school level.

Frequency

Annually (Fall)

Forms of Learning and
Teaching

Lectures (35 hours)
Private study (90 hours)

Duration

1 semester

Workload

125 hours

Recommendations for Preparation

Review all of the first-year calculus and linear algebra modules as indicated in “Entry Requirements – Knowledge, Ability,
or Skills” above.

8.1.3

88

Content and Educational Aims

This module aims to provide a basic knowledge of probability theory and random processes suitable for students in
engineering, Computer Science, and Mathematics. The module provides students with basic skills needed for formulating
real-world problems dealing with randomness and probability in mathematical language, and methods for applying a
toolkit to solve these problems. Mathematical rigor is used where appropriate. A more advanced treatment of the subject
is deferred to the third-year module Stochastic Processes.

The lecture comprises the following topics
• Brief review of number systems, elementary functions, and their graphs
• Outcomes, events and sample space.
• Combinatorial probability.
• Conditional probability and Bayes’ formula.
• Binomials and Poisson-Approximation
• Random Variables, distribution and density functions.
• Independence of random variables.
• Conditional Distributions and Densities.
• Transformation of random variables.
• Joint distribution of random variables and their transformations.
• Expected Values and Moments, Covariance.
• High dimensional probability: Chebyshev and Chernoff bounds.
• Moment-Generating Functions and Characteristic Functions,
• The Central limit theorem.
• Random Vectors and Moments, Covariance matrix, Decorrelation.
• Multivariate normal distribution.
• Markov chains, stationary distributions.

Intended Learning Outcomes

By the end of the module, students will be able to

1. command the methods described in the content section of this module description to the extent that they can
solve standard text-book problems reliably and with confidence;

2. recognize the probabilistic structures in an unfamiliar context and translate them into a mathematical problem
statement;

3. recognize common mathematical terminology used in textbooks and research papers in the quantitative sciences,
engineering, and mathematics to the extent that they fall into the content categories covered in this module.

Indicative Literature

J. Hwang and J.K. Blitzstein (2019). Introduction to Probability, second edition. London: Chapman & Hall.

S. Ghahramani. Fundamentals of Probability with Stochastic Processes, fourth edition. Upper Saddle River: Prentice Hall.

Usability and Relationship to other Modules

• Students taking this module are expected to be familiar with basic tools from calculus and linear algebra.
Examination Type: Module Examination

Assessment type: Written examination Duration: 120 min
 Weight: 100%
Scope: All intended learning outcomes of this module

Completion: To pass this module, the examination has to be passed with at least 45%.

89

 Numerical Methods

Module Name Module
Code

Level (type) CP

Numerical Methods CTMS-MAT-
13

Year 2 (Methods) 5

Module Components

Number Name Type CP
CTMS-13 Numerical Methods Lecture 5
Module Coordinator

Dr. Keivan Mallahi
Karai

Program Affiliation

• CONSTRUCTOR Track Area

Mandatory Status

Mandatory for ECE
Mandatory elective for CS
and RIS

Entry Requirements

Pre-requisites

☒ None

Co-requisites

☒ None

Knowledge, Abilities, or Skills

Knowledge of Calculus (functions,
inverse functions, sets, real
numbers, sequences and limits,
polynomials, rational functions,
trigonometric functions, logarithm
and exponential function,
parametric equations, tangent
lines, graphs, derivatives, anti-
derivatives, elementary
techniques for solving equations)
Knowledge of Linear Algebra
(vectors, matrices, lines, planes, n-
dimensional Euclidean vector
space, rotation, translation, dot
product (scalar product), cross
product, normal vector,
eigenvalues, eigenvectors,
elementary techniques for solving
systems of linear equations)

Frequency

Annually
(Spring)

Forms of Learning and
Teaching

• Lectures (35 hours)
• Private study (90

hours)
Duration

1 semester

Workload

125 hours

Recommendations for Preparation

Taking Calculus and Elements of Linear Algebra II before taking this module is recommended, but not required. A thorough
review of Calculus and Elements of Linear Algebra, with emphasis on the topics listed as “Knowledge, Abilities, or Skills” is
recommended.

8.1.4

90

Content and Educational Aims

This module covers calculus-based numerical methods, in particular root finding, interpolation, approximation, numerical
differentiation, numerical integration (quadrature), and a first introduction to the numerical solution of differential equations.

The lecture comprises the following topics

• number representations
• Gaussian elimination
• LU decomposition
• Cholesky decomposition
• iterative methods
• bisection method
• Newton’s method
• secant method
• polynomial interpolation
• Aitken’s algorithm
• Lagrange interpolation
• Newton interpolation
• Hermite interpolation
• Bezier curves
• De Casteljau’s algorithm
• piecewise interpolation
• Spline interpolation
• B-Splines
• Least-squares approximation
• polynomial regression
• difference schemes
• Richardson extrapolation
• Quadrature rules
• Monte Carlo integration
• time stepping schemes for ordinary differential equations
• Runge Kutta schemes
• finite difference method for partial differential equations

Intended Learning Outcomes
By the end of the module, students will be able to
1. describe the basic principles of discretization used in the numerical treatment of continuous problems;
2. command the methods described in the content section of this module description to the extent that they can solve

standard text-book problems reliably and with confidence;
3. recognize mathematical terminology used in textbooks and research papers on numerical methods in the quantitative

sciences, engineering, and mathematics to the extent that they fall into the content categories covered in this module;
4. implement simple numerical algorithms in a high-level programming language;
5. understand the documentation of standard numerical library code and understand the potential limitations and caveats

of such algorithms.

Indicative Literature

D. Kincaid and W. Cheney (1991). Numerical Analysis: Mathematics of Scientific Computing. Pacific Grove: Brooks/Cole
Publishing.

W. Boehm and H. Prautzsch (1993). Numerical Methods. Natick: AK Peters.

Usability and Relationship to other Modules

• This module is a co-recommendation for the module “Applied Dynamical Systems Lab”, in which the actual
implementation in a high-level programming language of the learned methods will be covered.

Examination Type: Module Examination

Assessment type: Written examination Duration: 120 min
 Weight: 100%

91

Scope: All intended learning outcomes of this module.

 Completion: To pass this module, the examination has to be passed with at least 45%.

92

 Statistics and Data Analytics

Module Name
Statistics and Data Analytics

Module Code
CTMS-MET-21

Level (type)
Year 2
(Methods)

CP
5

Module Components

Number
CTMS-21 Statistics and Data Analytics Lecture 5

Module
Coordinator

Dr. Ivan
Ovsyannikov

Program Affiliation

• CONSTRUCTOR Track Area

Mandatory Status

Mandatory for SDT, MMDA
and PHDS
Mandatory elective for CS

Entry Requirements

Pre-requisites

☒ Probability and
Random Processes

Co-requisites

☒ none

Knowledge, Abilities, or
Skills

• Good command
of basic
probability

Frequency

Annually
(Spring)

Forms of Learning and
Teaching

• Lectures (35 hours)
• Private Study (105 hours)

Duration
1 semester

Workload

120 hours

Recommendations for Preparation

Recap Probability and Random Processes

Content and Educational Aims

The aims of this module is to introduce students to basic ideas and methods used for analysing large and complex datasets.
While the first modern statistical toolkits date back to the beginning of the twentieth century, the advent of computer
age and the availability of fast computations has lead to dramatic changes in the field.

Statistical models have found applications in many areas ranging from business and healthcare to astrophysics and speech
recognition. Such models are used to make predictions, draw inferences and support policy decisions in all these areas.

This module draws on students’ knowledge from the module Probability and Random Processes to help them build and
analyze statistical models, ranging in their degree of sophistication from basis to more advanced ones, and apply them to
real-world situations. The module will cover the following topics:

• Classical statistics: descriptive and inferential modes, parameter estimation and hypothesis testing.
• Linear regressions, multiple linear regressions
• Classification: logistic regression, generative models for classification
• Resampling methods, bootstrap
• Non-linear models, splines
• Support vector machines
• Basic ideas of deep learning

Intended Learning Outcomes

Upon completion of this module, students will be able to

1. formulate statistical models for real world problems
2. describe statistical methods for analyzing real world problems
3. explain the importance of linear and non-linear models
4. recognize different solution methods for modeling problems

8.1.5

93

5. illustrate the use of regressions, resampling, support vector machines and other statistical tools to describe
phenomena in the real world

6. Describe basic ideas of deep learning

Indicative Literature

James, Witten, Hastie, Tibshirani. An introduction to Statistical learning; second edition.

Usability and Relationship to other Modules

• This module is part of the core education in Mathematics, Modeling and Data Analytics and Physics and Data
Science.

• It is also valuable for students in Computer Science, RIS, and ECE, either as part of a minor in Mathematics, or
as an elective module.

Examination Type: Module Examination

Assessment Type: Written examination Duration: 120 min
 Weight: 100%
Scope: All intended learning outcomes of this module

Completion: To pass this module, the examination has to be passed with at least 45%.

94

 Matrix Algebra and Advanced Calculus I

Module Name

Matrix Algebra and Advanced Calculus I

Module Code

CTMS-MAT-22

Level (type)

Year 1
(Methods)

CP

5

Module Components

Number Name Type CP

CTMS-22 Matrix Algebra and Advanced Calculus I Lecture 5

Module
Coordinator

Dr. Keivan
Mallahi Karai

Program Affiliation

• CONSTRUCTOR Track Area

Mandatory Status

Mandatory for ECE, MMDA
and PHDS

Mandatory elective for CS,
RIS and SDT

Entry
Requirements

Pre-requisites

☒ none

Co-requisites

☒ none

Knowledge, Abilities, or Skills

Knowledge of pre-calculus
ideas (sets and functions,
elementary functions,
polynomials) and analytic
geometry (equations of lines,
systems of linear equations,
dot product, polar
coordinates) at High School
level. Familiarity with ideas
of calculus is helpful.

Frequency

Annually

(Spring/Fall)

Forms of Learning and
Teaching

• Lectures (35 hours)
• Private study (90 hours)

Duration

1 semester

Workload

125 hours

Recommendations for Preparation

Review of high school mathematics.

Content and Educational Aims

This module is the first in a sequence including advanced mathematical methods at the university level at a level higher
than the course Calculus and Linear Algebra I. The course comprises the following topics:

• Number systems, complex numbers
• The concept of function, composition of functions, inverse functions
• Basic ideas of calculus: Archimedes to Newton
• The notion of limit for functions and sequences and series
• Continuous function and their basic properties
• Derivatives: rate of change, velocity and applications
• Mean value theorem and estimation, maxima and minima, convex functions
• Integration, change of variables, Fundamental Theorem of Calculus
• Applications of the integral: work, area, average value, centre of mass
• Improper Integrals, Mean value theorem for integrals
• Taylor series
• Ordinary differential equations, examples, solving first order linear differential equations
• Basic ideas of numerical analysis, Newton's method, asymptotic formulas
• Review of elementary analytic geometry, lines, conics
• Vector spaces, linear independence, bases, coordinates

8.1.6

95

• Linear maps, matrices and their algebra, matrix inverses
• Gaussian elimination, solution space
• Determinants

Intended Learning Outcomes

Upon completion of this module, students will be able to

1. apply the methods described in the content section of this module description to the extent that they can
2. solve standard text-book problems reliably and with confidence;
3. recognize the mathematical structures in an unfamiliar context and translate them into a mathematical

problem statement;
4. recognize common mathematical terminology used in textbooks and research papers in the quantitative

sciences, engineering, and mathematics to the extent that they fall into the content categories covered in this
module.

Indicative Literature

Advanced Calculus, G.B. Folland (Pearson, 2002)

Linear Algebra, S. Lang (Springer Verlag, 1986)

Mathematical Methods for Physics and Engineering,

K. Riley, M. Hobson, S. Bence (Cambridge University Press, 2006)

Usability and Relationship to other Modules

• Calculus and Linear Algebra I can be substituted with this module after consulting academic advisor
• A more advanced treatment of multi-variable Calculus, in particular, its applications in Physics and

Mathematics, is provided in the second-semester module “Applied Mathematics”. All students taking “Applied
Mathematics” are expected to take this module as well as the module topics are closely synchronized.

• The second-semester module “Linear Algebra” provides a complete proof-driven development of the theory of
Linear Algebra. Diagonalization is covered more abstractly, with particular emphasis on degenerate cases. The
Jordan normal form is also covered in “Linear Algebra”, not in this module.

Examination Type: Module Examination

Assessment Type: Written examination Duration: 120 min

 Weight: 100%

Scope: All intended learning outcomes of the module.

Completion: To pass this module, the examination has to be passed with at least 45%

96

 Matrix Algebra and Advanced Calculus II

Module Name
Matrix Algebra and Advanced Calculus II

Module Code
CTMS-MAT-23

Level (type)
Year 1
(Methods)

CP
5

Module Components

Number Name Type CP

CTMS-23 Matrix Algebra and Advanced Calculus II Lecture 5

Module
Coordinator

Dr. Keivan
Mallahi Karai

Program Affiliation

• CONSTRUCTOR Track Area

Mandatory Status

Mandatory for ECE, MMDA
and PHDS

Mandatory elective for CS,
RIS and SDT

Entry
Requirements

Pre-requisites

☒ Matrix Algebra
and Advanced
Calculus I

Co-requisites

☒ none

Knowledge, Abilities, or
Skills
None beyond formal pre-
requisites

Frequency

Annually
(Spring)

Forms of Learning and
Teaching
• Lectures (35 hours)
• Private study (90 hours)

Duration

1 semester

Workload

125 hours

Recommendations for Preparation

Review the content of Matrix Algebra and Advanced Calculus I
Content and Educational Aims

• Coordinate systems, functions of several variables, level curves, polar coordinates
• Continuity, directional derivatives, partial derivatives, chain rule (version I)
• derivative as a matrix, chain rule (version II), tangent planes and linear approximation, gradient, repeated

partial derivatives
• Minima and Maxima of functions of several variables, Lagrange multipliers
• Multiple integrals, iterated integrals, integration over standard regions, change of variables formula
• Vector fields, parametric representation of curves, line integrals and arc length, conservative vector fields
• Potentials, Green's theorem in the plane
• Parametric representation of surfaces
• Vector products and normal surface integrals
• Integral theorems by Stokes and Gauss, physical interpretations
• Basics of differential forms and their calculus, connection to gradient, curl, and divergence
• Eigenvalues and eigenvectors, diagonalisable matrices
• Inner product spaces, Hermitian and unitary matrices
• Matrix factorizations: Singular value decomposition with applications, LU decomposition, QR decomposition
• Linear constant-coefficient ordinary differential equations, application to mechanical vibrations and electrical

oscillations
• Periodic functions, Fourier series

Intended Learning Outcomes

Upon completion of this module, students will be able to

1. understand the definitions of continuity, derivative of a function as a linear transformation, multivariable
integrals, eigenvalues and eigenvectors and associated notions.

2. apply the methods described in the content section of this module description to the extent that they can
3. evaluate multivariable integrals using definitions or by applying Green and Stokes theorem.
4. evaluate various decompositions of matrices
5. solve standard text-book problems reliably and with confidence;

8.1.7

97

6. recognize the mathematical structures in an unfamiliar context and translate them into a mathematical
problem statement;

7. recognize common mathematical terminology used in textbooks and research papers in the quantitative
sciences, engineering, and mathematics to the extent that they fall into the content categories covered in this
module.

Indicative Literature

Advanced Calculus, G.B. Folland (Pearson, 2002)

Linear Algebra, S. Lang (Springer Verlag, 1986)

Mathematical Methods for Physics and Engineering,

K. Riley, M. Hobson, S. Bence (Cambridge University Press, 2006)

Vector Calculus, Linear Algebra, and Differential Forms: A Unified

Approach, J.H. Hubbard, B. Hubbard (Pearson, 1998)

Usability and Relationship to other Modules

• This module can substitute Calculus and Linear Algebra II after consulting academic advisor.
• Methods of this course are applied in the module Mathematical Modeling.
• The second-semester module Linear Algebra provides a more rigorous and more abstract treatment of some

of the notions discussed in this module.

Examination Type: Module Examination

Assessment type: Written examination Length/duration: (120min)
 Weight: 100 %

Scope: All intended learning outcomes of this module

Completion: To pass this module, the examination has to be passed with at least 45%

98

8.2 New Skills

 Logic (perspective I)

Module Name
Logic (perspective I)

Module Code
CTNS-NSK-01

Level (type)
Year 2
(New Skills)

CP
2.5

Module Components

Number Name Type CP

CTNS-01 Logic (perspective I) Lecture (online) 2.5

Module
Coordinator

Prof. Dr. Jules
Coleman

Program Affiliation

• CONSTRUCTOR Track Area

Mandatory Status

Mandatory elective for all UG
students (one perspective
must be chosen)

Entry
Requirements

Pre-requisites

☒ none

Co-requisites

☒ none

Knowledge, Abilities, or
Skills

Frequency

Annually
(Fall)

Forms of Learning and
Teaching

Online lecture (17.5h)
Private study (45h)

Duration

1 semester

Workload

62.5 hours

Recommendations for Preparation

Content and Educational Aims

Suppose a friend asks you to help solve a complicated problem? Where do you begin? Arguably, the first and most difficult
task you face is to figure out what the heart of the problem actually is. In doing that you will look for structural similarities
between the problem posed and other problems that arise in different fields that others may have addressed successfully.
Those similarities may point you to a pathway for resolving the problem you have been asked to solve. But it is not enough
to look for structural similarities. Sometimes relying on similarities may even be misleading. Once you’ve settled
tentatively on what you take to be the heart of the matter, you will naturally look for materials, whether evidence or
arguments, that you believe is relevant to its potential solution. But the evidence you investigate of course depends on
your formulation of the problem, and your formulation of the problem likely depends on the tools you have available –
including potential sources of evidence and argumentation. You cannot ignore this interactivity, but you can’t allow
yourself to be hamstrung entirely by it. But there is more. The problem itself may be too big to be manageable all at once,
so you will have to explore whether it can be broken into manageable parts and if the information you have bears on all
or only some of those parts. And later you will face the problem of whether the solutions to the particular sub problems
can be put together coherently to solve the entire problem taken as a whole.

What you are doing is what we call engaging in computational thinking. There are several elements of computational
thinking illustrated above. These include: Decomposition (breaking the larger problem down into smaller ones); Pattern
recognition (identifying structural similarities); Abstraction (ignoring irrelevant particulars of the problem): and Creating
Algorithms), problem-solving formulas.

But even more basic to what you are doing is the process of drawing inferences from the material you have. After all,
how else are you going to create a problem-solving formula, if you draw incorrect inferences about what information has
shown and what, if anything follows logically from it. What you must do is apply the rules of logic to the information to
draw inferences that are warranted.

We distinguish between informal and formal systems of logic, both of which are designed to indicate fallacies as well as
warranted inferences. If I argue for a conclusion by appealing to my physical ability to coerce you, I prove nothing about

8.2.1

99

the truth of what I claim. If anything, by doing so I display my lack of confidence in my argument. Or if the best I can do
is berate you for your skepticism, I have done little more than offer an ad hominem instead of an argument. Our focus
will be on formal systems of logic, since they are at the heart of both scientific argumentation and computer developed
algorithms. There are in fact many different kinds of logic and all figure to varying degrees in scientific inquiry. There are
inductive types of logic, which purport to formalize the relationship between premises that if true offer evidence on behalf
of a conclusion and the conclusion and are represented as claims about the extent to which the conclusion is confirmed
by the premises. There are deductive types of logic, which introduce a different relationship between premise and
conclusion. These variations of logic consist in rules that if followed entail that if the premises are true then the conclusion
too must be true.

There are also modal types of logic which are applied specifically to the concepts of necessity and possibility, and thus to
the relationship among sentences that include either or both those terms. And there is also what are called deontic logic,
a modification of logic that purport to show that there are rules of inference that allow us to infer what we ought to do
from facts about the circumstances in which we find ourselves. In the natural and social sciences most of the emphasis
has been placed on inductive logic, whereas in math it is placed on deductive logic, and in modern physics there is an
increasing interest in the concepts of possibility and necessity and thus in modal logic. The humanities, especially
normative discussions in philosophy and literature are the province of deontic logic.

This module will also take students through the central aspects of computational thinking, as it is related to logic; it will
introduce the central concepts in each, their relationship to one another and begin to provide the conceptual apparatus
and practical skills for scientific inquiry and research.
Intended Learning Outcomes

Students acquire transferable and key skills in this module.

By the end of this module, the students will be able to

1. apply the various principles of logic and expand them to computational thinking.
2. understand the way in which logical processes in humans and in computers are similar and different at

the same time.
3. apply the basic rules of first-order deductive logic and employ them rules in the context of creating a

scientific or social scientific study and argument.
4. employ those rules in the context of creating a scientific or social scientific study and argument.

Indicative Literature

Frege, Gottlob (1879), Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens
[Translation: A Formal Language for Pure Thought Modeled on that of Arithmetic],Halle an der Salle: Verlag von Louis
Nebert.

Gödel, Kurt (1986), Russels mathematische Logik. In: Alfred North Whitehead, Bertrand Russell: Principia Mathematica.
Vorwort, S. V–XXXIV. Suhrkamp.

Leeds, Stephen. "George Boolos and Richard Jeffrey. Computability and logic. Cambridge University Press, New York and
London1974, x+ 262 pp." The Journal of Symbolic Logic 42.4 (1977): 585-586.

Kubica, Jeremy. Computational fairy tales. Jeremy Kubica, 2012.

McCarthy, Timothy. "Richard Jeffrey. Formal logic: Its scope and limits. of XXXVIII 646. McGraw-Hill Book Company, New
York etc. 1981, xvi+ 198 pp." The Journal of Symbolic Logic 49.4 (1984): 1408-1409.

Usability and Relationship to other Modules

Examination Type: Module Examination

Assessment Type: Written Examination Duration: 60 min
 Weight: 100%
Scope: All intended learning outcomes of the module.

Completion: To pass this module, the examination has to be passed with at least 45%

100

 Logic (perspective II)

Module Name
Logic (perspective II)

Module Code
CTNS-NSK-02

Level (type)
Year 2
(New Skills)

CP
2.5

Module Components

Number Name Type CP
CTNS-02 Logic (perspective II) Lecture (online) 2.5
Module
Coordinator

NN

Program Affiliation

• CONSTRUCTOR Track Area

Mandatory Status

Mandatory elective for all UG
students (one perspective must
be chosen)

Entry
Requirements

Pre-requisites

☒ none

Co-requisites

☒ none

Knowledge, Abilities, or Skills

•

Frequency

Annually
(Fall)

Forms of Learning and
Teaching

Online lecture (17.5h)
Private study (45h)

Duration

1 semester

Workload

62.5 hours

Recommendations for Preparation

Content and Educational Aims

The focus of this module is on formal systems of logic, since they are at the heart of both scientific argumentation and
computer developed algorithms. There are in fact many kinds of logic and all figure to varying degrees in scientific
inquiry. There are inductive types of logic, which purport to formalize the relationship between premises that if true offer
evidence on behalf of a conclusion and the conclusion and are represented as claims about the extent to which the
conclusion is confirmed by the premises. There are deductive types of logic, which introduce a different relationship
between premise and conclusion. These variations of logic consist in rules that if followed entail that if the premises are true
then the conclusion too must be true.

This module introduces logics that go beyond traditional deductive propositional logic and predicate logic and as such it is
aimed at students who are already familiar with basics of traditional formal logic. The aim of the module is to provide an
overview of alternative logics and to develop a sensitivity that there are many different logics that can provide effective
tools for solving problems in specific application domains.

The module first reviews the principles of a traditional logic and then introduces many-valued logics that distinguish more
than two truth values, for example true, false, and unknown. Fuzzy logic extends traditional logic by replacing truth values
with real numbers in the range 0 to 1 that are expressing how strong the believe into a proposition is. Modal logics introduce
modal operators expressing whether a proposition is necessary or possible. Temporal logics deal with propositions that are
qualified by time. Once can view temporal logics as a form of modal logics where propositions are qualified by time
constraints. Interval temporal logic provides a way to reason about time intervals in which propositions are true.

The module will also investigate the application of logic frameworks to specific classes of problems. For example, a special
subset of predicate logic, based on so-called Horn clauses, forms the basis of logic programming languages such as Prolog.
Description logics, which are usually decidable logics, are used to model relationships and they have applications in the
semantic web, which enables search engines to reason about resources present on the Internet.

Intended Learning Outcomes

Students acquire transferable and key skills in this module.

By the end of this module, the students will be able to

1. apply the various principles of logic
2. explain practical relevance of non-standard logic
3. describe how many-valued logic extends basic predicate logic
4. apply basic rules of fuzzy logic to calculate partial truth values

8.2.2

101

5. sketch basic rules of temporal logic
6. implement predicates in a logic programming language
7. prove some simple non-standard logic theorems

Indicative Literature

• Bergmann, Merry. “An Introduction to Many-Valued and Fuzzy Logic: Semantics, Algebras, and Derivation
Systems”, Cambridge University Press, April 2008.

• Sterling, Leon S., Ehud Y. Shapiro, Ehud Y. "The Art of Prolog", 2nd edition, MIT Press, March 1994.
• Fisher, Michael. “An Introduction to Practical Formal Methods Using Temporal Logic”, Wiley, Juli 2011.
• Baader, Franz. "The Description Logic Handbook: Theory Implementation and Applications", Cambridge University

Press, 2nd edition, May 2010.
Usability and Relationship to other Modules

Examination Type: Module Examination

Assessment Type: Written Examination Duration: 60 min

Weight: 100%
Scope: All intended learning outcomes of the module.

Completion: To pass this module, the examination has to be passed with at least 45%

102

 Causation and Correlation (perspective I)

Module Name

Causation and Correlation (perspective I)

Module Code
CTNS-NSK-03

Level (type)
Year 2
(New Skills)

CP
2.5

Module Components

Number Name Type CP

CTNS-03 Causation and Correlation Lecture (online) 2.5

Module
Coordinator

Prof. Dr. Jules
Coleman

Program Affiliation

• CONSTRUCTOR Track Area

Mandatory Status

Mandatory elective for all UG
students (one perspective
must be chosen)

Entry
Requirements

Pre-requisites

☒ none

Co-requisites

☒ none

Knowledge, Abilities, or
Skills

•

Frequency

Annually
(Spring)

Forms of Learning and
Teaching

Online lecture (17.5h)
Private study (45h)

Duration

1 semester

Workload

62.5 hours

Recommendations for Preparation

Content and Educational Aims

In many ways, life is a journey. And also, as in other journeys, our success or failure depends not only on our personal
traits and character, our physical and mental health, but also on the accuracy of our map. We need to know what the
world we are navigating is actually like, the how, why and the what of what makes it work the way it does. The natural
sciences provide the most important tool we have developed to learn how the world works and why it works the way it
does. The social sciences provide the most advanced tools we have to learn how we and other human beings, similar in
most ways, different in many others, act and react and what makes them do what they do. In order for our maps to be
useful, they must be accurate and correctly reflect the way the natural and social worlds work and why they work as they
do.

The natural sciences and social sciences are blessed with enormous amounts of data. In this way, history and the present
are gifts to us. To understand how and why the world works the way it does requires that we are able to offer an
explanation of it. The data supports a number of possible explanations of it. How are we to choose among potential
explanations? Explanations, if sound, will enable us to make reliable predictions about what the future will be like, and
also to identify many possibilities that may unfold in the future. But there are differences not just in the degree of
confidence we have in our predictions, but in whether some of them are necessary future states or whether all of them
are merely possibilities? Thus, there are three related activities at the core of scientific inquiry: understanding where we
are now and how we got here (historical); knowing what to expect going forward (prediction); and exploring how we can
change the paths we are on (creativity).

At the heart of these activities are certain fundamental concepts, all of which are related to the scientific quest to uncover
immutable and unchanging laws of nature. Laws of nature are thought to reflect a causal nexus between a previous event
and a future one. There are also true statements that reflect universal or nearly universal connections between events
past and present that are not laws of nature because the relationship they express is that of a correlation between events.
A working thermostat accurately allows us to determine or even to predict the temperature in the room in which it is
located, but it does not explain why the room has the temperature it has. What then is the core difference between
causal relationships and correlations? At the same time, we all recognize that given where we are now there are many
possible futures for each of us, and even had our lives gone just the slightest bit differently than they have, our present
state could well have been very different than it is. The relationship between possible pathways between events that have
not materialized but could have is expressed through the idea of counterfactual.

8.2.3

103

Creating accurate roadmaps, forming expectations we can rely on, making the world a more verdant and attractive place
requires us to understand the concepts of causation, correlation, counterfactual explanation, prediction, necessity,
possibility, law of nature and universal generalization. This course is designed precisely to provide the conceptual tools
and intellectual skills to implement those concepts in our future readings and research and ultimately in our experimental
investigations, and to employ those tools in various disciplines.

Intended Learning Outcomes

Students acquire transferable and key skills in this module.

By the end of this module, the students will be able to

1. formulate testable hypotheses that are designed to reveal causal connections and those designed to
reveal interesting, important and useful correlations.

2. distinguish scientifically interesting correlations from unimportant ones.
3. apply critical thinking skills to evaluate information.
4. understand when and why inquiry into unrealized possibility is important and relevant.

Indicative Literature

Thomas S. Kuhn: The Structure of Scientific Revolutions, Nelson, fourth edition 2012;

Goodman, Nelson. Fact, fiction, and forecast. Harvard University Press, 1983;

Quine, Willard Van Orman, and Joseph Silbert Ullian. The web of belief. Vol. 2. New York: Random house, 1978.

Usability and Relationship to other Modules

Examination Type: Module Examination

Assessment Type: Written Examination Duration/Length: 60 min
 Weight: 100%
Scope: All intended learning outcomes of the module

Completion: To pass this module, the examination has to be passed with at least 45%

104

 Causation and Correlation (perspective II)

Module Name

Causation and Correlation (perspective II)

Module Code

CTNS-NSK-04

Level (type)

Year 2
(New Skills)

CP

2.5

Module Components

Number Name Type CP

CTNS-04 Causation and Correlations (perspective II) Lecture (online) 2.5

Module
Coordinator

Dr. Keivan
Mallahi Karai
Dr. Eoin Ryan Dr.
Irina Chiaburu

Program Affiliation

• CONSTRUCTOR Track Area

Mandatory Status

Mandatory elective for all UG
students (one perspective
must be chosen)

Entry
Requirements

Pre-requisites

☒ none

Co-requisites

☒ none

Knowledge, Abilities, or
Skills
Basic probability theory

Frequency

Annually

(Spring)

Forms of Learning and
Teaching

Online lecture (17.5h)

Private study (45h)

Duration

1 semester

Workload

62.5 hours

Recommendations for Preparation

Content and Educational Aims

Causality or causation is a surprisingly difficult concept to understand. David Hume famously noted that causality is a
concept that our science and philosophy cannot do without, but it is equally a concept that our science and philosophy
cannot describe. Since Hume, the problem of cause has not gone away, and sometimes seems to get even worse (e.g.,
quantum mechanics confusing previous notions of causality). Yet, ways of doing science that lessen our need to explicitly
use causality have become very effective (e.g., huge developments in statistics). Nevertheless, it still seems that the
concept of causality is at the core of explaining how the world works, across fields as diverse as physics, medicine, logistics,
the law, sociology, and history – and ordinary daily life – through all of which, explanations and predictions in terms of
cause and effect remain intuitively central.

Causality remains a thorny problem but, in recent decades, significant progress has occurred, particularly in work by or
inspired by Judea Pearl. This work incorporates many 20th century developments, including statistical methods – but with
a reemphasis on finding the why, or the cause, behind statistical correlations –, progress in understanding the logic,
semantics and metaphysics of conditionals and counterfactuals, developments based on insights from the likes of
philosopher Hans Reichenbach or biological statistician Sewall Wright into causal precedence and path analysis, and much
more. The result is a new toolkit to identify causes and build causal explanations. Yet even as we get better at identifying
causes, this raises new (or old) questions about causality, including metaphysical questions about the nature of causes
(and effects, events, objects, etc), but also questions about what we really use causality for (understanding the world as
it is or just to glean predictive control of specific outcomes), about how causality is used differently in different fields and

8.2.4

105

activities (is cause in physics the same as that in history?), and about how other crucial concepts relate to our concept of
cause (space and time seem to be related to causality, but so do concepts of legal and moral responsibility).

This course will introduce students to the mathematical formalism derived from Pearl’s work, based on directed acyclic
graphs and probability theory. Building upon previous work by Reichenbach and Wright, Pearl defines a "a calculus of
interventions" of "do-calculus" for talking about interventions and their relation to causation and counterfactuals. This
model has been applied in various areas ranging from econometrics to statistics, where acquiring knowledge about
causality is of great importance.

At the same time, the course will not forget some of the metaphysical and epistemological issues around cause, so that
students can better critically evaluate putative causal explanations in their full context. Abstractly, such issues involve
some of the same philosophical questions Hume already asked, but more practically, it is important to see how
metaphysical and epistemological debates surrounding the notion of cause affect scientific practice, and equally if not
more importantly, how scientific practice pushes the limits of theory. This course will look at various ways in which
empirical data can be transformed into explanations and theories, including the variance approach to causality
(characteristic of the positivistic quantitative paradigm), and the process theory of causality (associated with qualitative
methodology). Examples and case studies will be relevant for students of the social sciences but also students of the
natural/physical world as well.

Intended Learning Outcomes

Students acquire transferable and key skills in this module.

By the end of this module, the students will be able to

1. have a clear understanding of the history of causal thinking.
2. be able to form a critical understanding of the key debates and controversies surrounding the idea of

causality.
3. be able to recognize and apply probabilistic causal models.
4. be able to explain how understanding of causality differs among different disciplines.
5. be able demonstrate how theoretical thinking about causality has shaped scientific practices.

Indicative Literature

Paul, L. A. and Ned Hall. Causation: A User’s Guide. Oxford University Press 2013.

Pearl, Judea. Causality: Models, Reasoning and Inference. Cambridge University Press 2009

Pearl, Judea, Glymour Madelyn and Jewell, Nicolas. Causal Inference in Statistics: A Primer. Wiley 2016

llari, Phyllis McKay and Federica Russo. Causality: Philosophical Theory Meets Scientific Practice. Oxford University Press
2014.

Usability and Relationship to other Modules

Examination Type: Module Examination

Assessment: Written examination Duration/Length: 60 min

 Weight: 100 %

Scope: All intended learning outcomes of the module

Completion: To pass this module, the examination has to be passed with at least 45%

106

 Linear Model and Matrices

Module Name

Linear Model and Matrices

Module Code

CTNS-NSK-05

Level (type)

Year 3
(New Skills)

CP

5

Module Components

Number Name Type CP

CTNS-05 Linear models and Matrices Seminar (online) 5

Module
Coordinator

Prof. Dr. Marc-
Thorsten Hütt

Program Affiliation

• CONSTRUCTOR Track Area

Mandatory Status

Mandatory elective

Entry
Requirements

Pre-requisites
☒Logic
☒Causation &
Correlation

Co-requisites

☒ none

Knowledge, Abilities, or
Skills

Frequency

Annually
(Fall)

Forms of Learning and
Teaching

Online lecture (35h)
Private Study (90h)

Duration

1 Semester

Workload

125 hours

Recommendations for Preparation

Content and Educational Aims

There are no universal 'right skills'. But the notion of linear models and the avenue to matrices and their properties can
be useful in diverse disciplines to implement a quantitative, computational approach. Some of the most popular data and
systems analysis strategies are built upon this framework. Examples include principal component analysis (PCA), the
optimization techniques used in Operations Research (OR), the assessment of stable and unstable states in nonlinear
dynamical systems, as well as aspects of machine learning.

Here we introduce the toolbox of linear models and matrix-based methods embedded in a wide range of transdisciplinary
applications (part 1). We describe its foundation in linear algebra (part 2) and the range of tools and methods derived
from this conceptual framework (part 3). At the end of the course, we outline applications to graph theory and machine
learning (part 4). Matrices can be useful representations of networks and of system of linear equations. They are also the
core object of linear stability analysis, an approach used in nonlinear dynamics. Throughout the course, examples from
neuroscience, social sciences, medicine, biology, physics, chemistry, and other fields are used to illustrate these methods.

A strong emphasis of the course is on the sensible usage of linear approaches in a nonlinear world. We will critically reflect
the advantages as well as the disadvantages and limitations of this method. Guiding questions are: How appropriate is a
linear approximation of a nonlinear system? What do you really learn from PCA? How reliable are the optimal states
obtained via linear programming (LP) techniques?

This debate is embedded in a broader context: How does the choice of a mathematical technique confine your view on
the system at hand? How, on the other hand, does it increase your capabilities of analyzing the system (due to software
available for this technique, the ability to compare with findings from other fields built upon the same technique and the
volume of knowledge about this technique)?

8.2.5

107

In the end, students will have a clearer understanding of linear models and matrix approaches in their own discipline, but
they will also see the full transdisciplinarity of this topic. They will make better decisions in their choice of data analysis
methods and become mindful of the challenges when going from a linear to a nonlinear thinking.

Intended Learning Outcomes

Upon completion of this module, students will be able to

1. apply the concept of linear modeling in their own discipline
2. distinguish between linear and nonlinear interpretation strategies and understand the range of

applicability of linear models
3. make use of data analysis / data interpretation strategies from other disciplines, which are derived from

linear algebra
4. be aware of the ties that linear models have to machine learning and network theory

Note that these four ILOs can be loosely associated with the four parts of the course indicated above

Indicative Literature

Part 1:

material from Linear Algebra for Everyone, Gilbert Strang, Wellesley-Cambridge Press, 2020

Part 2:

material from Introduction to Linear Algebra (5th Edition), Gilbert Strang, Cambridge University Press, 2021

Part 3:

Mainzer, Klaus. "Introduction: from linear to nonlinear thinking." Thinking in Complexity: The Computational Dynamics
of Matter, Mind and Mankind (2007): 1-16.

material from Mathematics of Big Data: Spreadsheets, Databases, Matrices, and Graphs, Jeremy Kepner, Hayden
Jananthan, The MIT Press, 2018

material from Introduction to Linear Algebra (5th Edition), Gilbert Strang, Cambridge University Press, 2021

Part 4:

material from Linear Algebra and Learning from Data, Gilbert Strang, Wellesley-Cambridge Press, 2019

Usability and Relationship to other Modules

Examination Type: Module Examination

Assessment: Written examination Duration/Length: 120 min

 Weight: 100 %

Scope: All intended learning outcomes of the module

Completion: To pass this module, the examination has to be passed with at least 45%

108

 Complex Problem Solving

Module Name

Complex Problem Solving

Module Code

CTNS-NSK-06

Level (type)

Year 3
(New Skills)

CP

5

Module Components

Number Name Type CP

CTNS-06 Complex Problem Solving Lecture (online) 5

Module
Coordinator

Prof. Dr. Marco
Verweij

Program Affiliation

• CONSTRUCTOR Track Area

Mandatory Status

Mandatory elective

Entry
Requirements

Pre-requisites
☒Logic
☒Causation &
Correlation

Co-requisites

☒ none

Knowledge, Abilities, or
Skills

• Being able to
read primary
academic
literature

• Willingness to
engage in
teamwork

Frequency

Annually
(Fall)

Forms of Learning and
Teaching

Online Lectures (35h)
Private Study (90h)

Duration

1 semester

Workload

125 hours

Recommendations for Preparation

Please read: Camillus, J. (2008). Strategy as a wicked problem. Harvard Business Review 86: 99-106; Rogers, P. J. (2008).
Using programme theory to evaluate complicated and complex aspects of interventions. Evaluation, 14, 29–48.

Content and Educational Aims

Complex problems are, by definition, non-linear and/or emergent. Some fifty years ago, scholars such as Herbert Simon
began to argue that societies around the world had developed an impressive array of tools with which to solve simple and
even complicated problems, but still needed to develop methods with which to address the rapidly increasing number of
complex issues. Since then, a variety of such methods has emerged. These include ‘serious games’ developed in computer
science, ‘multisector systems analysis’ applied in civil and environmental engineering, ‘robust decision-making’ proposed
by the RAND Corporation, ‘design thinking’ developed in engineering and business studies, ‘structured problem solving’
used by McKinsey & Co., ‘real-time technology assessment’ advocated in science and technology studies, and ‘deliberative
decision-making’ emanating from political science.

In this course, students first learn to distinguish between simple, complicated and complex problems. They also become
familiar with the ways in which a particular issue can sometimes shift from one category into another. In addition, the
participants learn to apply several tools for resolving complex problems. Finally, the students are introduced to the various
ways in which natural and social scientists can help stakeholders resolve complex problems. Throughout the course
examples and applications will be used. When possible, guest lectures will be offered by experts on a particular tool for
tackling complex issues. For the written, take-home exam, students will have to select a specific complex problem, analyse
it and come up with a recommendation – in addition to answering several questions about the material learned.

8.2.6

109

Intended Learning Outcomes

Upon completion of this module, students will be able to

1. Identify a complex problem;
2. Develop an acceptable recommendation for resolving complex problems.
3. Understand the roles that natural and social scientists can play in helping stakeholders resolve complex

problems;

Indicative Literature

Chia, A. (2019). Distilling the essence of the McKinsey way: The problem-solving cycle. Management Teaching Review
4(4): 350-377.

Den Haan, J., van der Voort, M.C., Baart, F., Berends, K.D., van den Berg, M.C., Straatsma, M.W., Geenen, A.J.P., &
Hulscher, S.J.M.H. (2020). The virtual river game: Gaming using models to collaboratively explore river management
complexity, Environmental Modelling & Software 134, 104855,

Folke, C., Carpenter, S., Elmqvist, T., Gunderson, L., Holling, C.S., & Walker, B. (2002). Resilience and sustainable
development: Building adaptive capacity in a world of transformations. AMBIO: A Journal of the Human Environment
31(5): 437-440.

Ostrom, E. (2010). Beyond markets and states: Polycentric governance of complex economic systems. American
Economic Review 100(3): 641-72.

Pielke, R. Jr. (2007). The honest broker: Making sense of science in policy and politics. Cambridge: Cambridge University
Press.

Project Management Institute (2021). A guide to the project management body of knowledge (PMBOK® guide).

Schon, D. A., & Rein, M. (1994). Frame reflection: Toward the resolution of intractable policy controversies. New York:
Basic Books.

Simon, H. A. (1973). The structure of ill structured problems. Artificial Intelligence 4(3-4): 181-201.

Verweij, M. & Thompson, M. (Eds.) (2006). Clumsy solutions for a complex world. London: Palgrave Macmillan.

Usability and Relationship to other Modules

Examination Type: Module Examination

Assessment Type: Written examination Duration: 120 min

 Weight: 100%

Scope: All intended learning outcomes of the module.

Completion: To pass this module, the examination has to be passed with at least 45%

110

 Argumentation, Data Visualization and Communication (perspective I)

Module Name

Argumentation, Data Visualization and Communication (perspective
I)

Module Code
CTNS-NSK-07

Level (type)
Year 3
(New Skills)

CP
5

Module Components

Number Name Type CP

CTNS-07 Argumentation, Data Visualization and Communication
(perspective I)

Lecture (online) 5

Module
Coordinator

Prof. Dr. Jules
Coleman,
Prof Dr. Arvid
Kappas

Program Affiliation

• CONSTRUCTOR Track Area

Mandatory Status

Mandatory elective for all UG
students (one perspective
must be chosen)

Entry
Requirements

Pre-requisites
☒Logic

☒ Causation &
Correlation

Co-requisites

☒ none

Knowledge, Abilities, or
Skills

Frequency

Annually
(Fall)

Forms of Learning and
Teaching

Online Lectures (35h)
Private Study (90h)

Duration

1 semester

Workload

125h

Recommendations for Preparation

One must be careful not to confuse argumentation with being argumentative. The latter is an unattractive personal
attribute, whereas the former is a requirement of publicly holding a belief, asserting the truth of a proposition, the
plausibility of a hypothesis, or a judgment of the value of a person or an asset. It is an essential component of public
discourse. Public discourse is governed by norms and one of those norms is that those who assert the truth of a
proposition or the validity of an argument or the responsibility of another for wrongdoing open themselves up to good
faith requests to defend their claims. In its most general meaning, argumentation is the requirement that one offer
evidence in support of the claims they make, as well as in defense of the judgments and assessments they reach. There
are different modalities of argumentation associated with different contexts and disciplines. Legal arguments have a
structure of their own as do assessments of medical conditions and moral character. In each case, there are differences
in the kind of evidence that is thought relevant and, more importantly, in the standards of assessment for whether a case
has been successfully made. Different modalities of argumentation require can call for different modes of reasoning. We
not only offer reasons in defense of or in support of beliefs we have, judgments we make and hypotheses we offer, but
we reason from evidence we collect to conclusions that are warranted by them.

Reasoning can be informal and sometimes even appear unstructured. When we recognize some reasoning as
unstructured yet appropriate what we usually have in mind is that it is not linear. Most reasoning we are familiar with is
linear in character. From A we infer B, and from A and B we infer C, which all together support our commitment to D.
The same form of reasoning applies whether the evidence for A, B or C is direct or circumstantial. What changes in these
cases is perhaps the weight we give to the evidence and thus the confidence we have in drawing inferences from it.

Especially in cases where reasoning can be supported by quantitative data, wherever quantitative data can be obtained
either directly or by linear or nonlinear models, the visualization of the corresponding data can become key in both,
reasoning and argumentation. A graphical representation can reduce the complexity of argumentation and is considered

8.2.7

111

a must in effective scientific communication. Consequently, the course will also focus on smart and compelling ways for
data visualization - in ways that go beyond what is typically taught in statistics or mathematics lectures. These tools are
constantly developing, as a reflection of new software and changes in state of the presentation art. Which graph or bar
chart to use best for which data, the use of colors to underline messages and arguments, but also the pitfalls when
presenting data in a poor or even misleading manner. This will also help in readily identifying intentional mis-
representation of data by others, the simplest to recognize being truncating the ordinate of a graph in order to exaggerate
trends. This frequently leads to false arguments, which can then be readily countered.

There are other modalities of reasoning that are not linear however. Instead they are coherentist. We argue for the
plausibility of a claim sometimes by showing that it fits in with a set of other claims for which we have independent
support. The fit is itself the reason that is supposed to provide confidence or grounds for believing the contested claim.

Other times, the nature of reasoning involves establishing not just the fit but the mutual support individual items in the
evidentiary set provide for one another. This is the familiar idea of a web of interconnected, mutually supportive beliefs.
In some cases, the support is in all instances strong; in others it is uniformly weak, but the set is very large; in other cases,
the support provided each bit of evidence for the other is mixed: sometimes strong, sometimes weak, and so on.

There are three fundamental ideas that we want to extract from this segment of the course. These are (1) that
argumentation is itself a requirement of being a researcher who claims to have made findings of one sort or another; (2)
that there are different forms of appropriate argumentation for different domains and circumstances; and (3) that there
are different forms of reasoning on behalf of various claims or from various bits of evidence to conclusions: whether those
conclusions are value judgments, political beliefs, or scientific conclusions. Our goal is to familiarize you with all three of
these deep ideas and to help you gain facility with each.

Intended Learning Outcomes

Students acquire transferable and key skills in this module.

By the end of this module, the students will be able to:

1. Distinguish among different modalities of argument, e.g. legal arguments, vs. scientific ones.

2. Construct arguments using tools of data visualization.

3. Communicate conclusions and arguments concisely, clearly and convincingly.

Indicative Literature

• Tufte, E.R. (1985). The visual display of quantitative information. The Journal for Healthcare Quality (JHQ),
7(3), 15.

• Cairo, A (2012). The Functional Art: An introduction to information graphics and visualization. New Ridders.

• Knaflic, C.N. (2015). Storytelling with data: A data visualization guide for business professionals. John Wiley &
Sons.

Usability and Relationship to other Modules

Examination Type: Module Examination

Assessment Type: Written Examination Duration/Length: 120 (min)
 Weight: 100%
Scope: All intended learning outcomes of the module

Completion: To pass this module, the examination has to be passed with at least 45%

112

 Argumentation, Data Visualization and Communication (perspective II)

Module Name

Argumentation, Data Visualization and Communication (perspective
II)

Module Code
CTNS-NSK-08

Level (type)
Year 3
(New Skills)

CP
5

Module Components

Number Name Type CP

CTNS-08 Argumentation, Data Visualization and Communication (perspective
II)

Lecture (online) 5

Module
Coordinator

Prof. Dr. Jules
Coleman,
Prof Dr. Arvid
Kappas

Program Affiliation

• CONSTRUCTOR Track Area

Mandatory Status

Mandatory elective for all
UG students (one
perspective must be chosen)

Entry
Requirements

Pre-requisites

☒Logic

☒ Causation &
Correlation

Co-requisites

☒ none

Knowledge, Abilities, or Skills

ability and openness to
engage in interactions
media literacy, critical
thinking and a proficient
handling of data sources
own research in academic
literature

Frequency

Annually
(Spring)

Forms of Learning and
Teaching

• Online Lecture (35

hours)
• Tutorial of the lecture

(10 hours)
• Private study for the

lecture (80 hours)

Duration

1 semester

Workload

125 hours

Recommendations for Preparation

Content and Educational Aims
Humans are a social species and interaction is crucial throughout the entire life span. While much of human
communication involves language, there is a complex multichannel system of nonverbal communication that enriches
linguistic content, provides context, and is also involved in structuring dynamic interaction. Interactants achieve goals by
encoding information that is interpreted in the light of current context in transactions with others. This complexity implies
also that there are frequent misunderstandings as a sender’s intention is not fulfilled. Students in this course will learn to
understand the structure of communication processes in a variety of formal and informal contexts. They will learn what
constitutes challenges to achieving successful communication and to how to communicate effectively, taking the context
and specific requirements for a target audience into consideration. These aspects will be discussed also in the scientific
context, as well as business, and special cases, such as legal context – particularly with view to argumentation theory.

Communication is a truly transdisciplinary concept that involves knowledge from diverse fields such as biology,
psychology, neuroscience, linguistics, sociology, philosophy, communication and information science. Students will learn
what these different disciplines contribute to an understanding of communication and how theories from these fields can
be applied in the real world. In the context of scientific communication, there will also be a focus on visual communication
of data in different disciplines. Good practice examples will be contrasted with typical errors to facilitate successful
communication also with view to the Bachelor’s thesis.

8.2.8

113

Intended Learning Outcomes

Upon completion of this module, students will be able to

1. Analyze communication processes in formal and informal contexts.
2. Identify challenges and failures in communication.
3. Design communications to achieve specified goals to specific target groups.
4. Understand the principles of argumentation theory.
5. Use data visualization in scientific communications.

Indicative Literature

• Joseph A. DeVito: The Interpersonal Communication Book (Global edition, 16th edition), 2022
• Steven L. Franconeri, Lace M. Padilla, Priti Shah, Jeffrey M. Zacks, and Jessica Hullman: The Science of Visual

Data Communication: What Works Psychological Science in the Public Interest, 22(3), 110–161, 2022
• Douglas Walton: Argumentation Theory – A Very Short Introduction. In: Simari, G., Rahwan, I. (eds)

Argumentation in Artificial Intelligence. Springer, Boston, MA, 2009

Examination Type: Module Examination

Assessment Type: Digital submission of asynchronous presentation, including reflection

Duration/Length: Asynchronous/Digital submission

Weight: 100%

Scope: All intended learning outcomes of the module

Module achievement: Asynchronous presentation on a topic relating to the major of the student, including a reflection
including concept outlining the rationale for how arguments are selected and presented based on a particular target
group for a particular purpose. The presentation shall be multimedial and include the presentation of data

The module achievement ensures sufficient knowledge about key concepts of effective communication including a
reflection on the presentation itself

Completion: To pass this module, the examination has to be passed with at least 45%%.

114

 Agency, Leadership, and Accountability

Module Name
Agency, Leadership, and Accountability

Module Code
CTNS-NSK-09

Level (type)
Year 3
(New Skills)

CP
5

Module Components

Number Name Type CP

CTNS-09 Agency, Leadership, and Accountability Lecture (online) 5

Module
Coordinator

Prof. Dr. Jules
Coleman

Program Affiliation

• CONSTRUCTOR Track Area

Mandatory Status

Mandatory for ACS
Mandatory elective for all
other UG study programs

Entry
Requirements

Pre-requisites

☒ none

Co-requisites

☒ none

Knowledge, Abilities, or
Skills

Frequency

Annually
(Spring)

Forms of Learning and
Teaching

Online Lectures (35h)
Private Study (90h)

Duration

1 semester

Workload

125 hours

Recommendations for Preparation

Content and Educational Aims

Each of us is judged by the actions we undertake and held to account for the consequences of them. Sometimes we may
be lucky and our bad acts don't have harmful effects on others. Other times we may be unlucky and reasonable decisions
can lead to unexpected or unforeseen adverse consequences for others. We are therefore held accountable both for
choices and for outcomes. In either case, accountability expresses the judgment that we bear responsibility for what we
do and what happens as a result. But our responsibility and our accountability in these cases is closely connected to the
idea that we have agency.

Agency presumes that we are the source of the choices we make and the actions that result from those choices. For some,
this may entail the idea that we have free will. But there is scientific world view that holds that all actions are determined
by the causes that explain them, which is the idea that if we knew the causes of your decisions in advance, we would know
the decision you would make even before you made it. If that is so, how can your choice be free? And if it is not free,
how can you be responsible for it? And if you cannot be responsible, how can we justifiably hold you to account for it?

These questions express the centuries old questions about the relationship between free will and a determinist world
view: for some, the conflict between a scientific world view and a moral world view.

But we do not always act as individuals. In society we organize ourselves into groups: e.g. tightly organized social groups,
loosely organized market economies, political societies, companies, and more. These groups have structure. Some
individuals are given the responsibility of leading the group and of exercising authority. But one can exercise authority
over others in a group merely by giving orders and threatening punishment for non-compliance.

Exercising authority is not the same thing as being a leader? For one can lead by example or by encouraging others to
exercise personal judgment and authority. What then is the essence of leadership?

The module has several educational goals. The first is for students to understand the difference between actions that we
undertake for which we can reasonably held accountable and things that we do but which we are not responsible for. For
example, a twitch is an example of the latter, but so too may be a car accident we cause as a result of a heart attack we

8.2.9

115

had no way of anticipating or controlling. This suggests the importance of control to responsibility. At the heart of
personal agency is the idea of control. The second goal is for students to understand what having control means. Some
think that the scientific view is that the world is deterministic, and if it is then we cannot have any personal control over
what happens, including what we do. Others think that the quantum scientific view entails a degree of indeterminacy and
that free will and control are possible, but only in the sense of being unpredictable or random. But then random outcomes
are not ones we control either. So, we will devote most attention to trying to understand the relationships between
control, causation and predictability.

But we do not only exercise agency in isolation. Sometimes we act as part of groups and organizations. The law often
recognizes ways in which groups and organizations can have rights, but is there a way in which we can understand how
groups have responsibility for outcomes that they should be accountable for. We need to figure out then whether there
is a notion of group agency that does not simply boil down to the sum of individual actions. We will explore the ways in
which individual actions lead to collective agency.

Finally we will explore the ways in which occupying a leadership role can make one accountable for the actions of others
over which one has authority.

Intended Learning Outcomes

Students acquire transferable and key skills in this module.

By the end of this module, the students will be able to

1. Understand and reflect how the social and moral world views that rely on agency and responsibility are
compatible, if they are, with current scientific world views.

2. understand how science is an economic sector, populated by large powerful organizations that set norms
and fund research agendas.

3. identify the difference between being a leader of others or of a group – whether a research group or a lab
or a company – and being in charge of the group.

4. learn to be a leader of others and groups. Understand that when one graduates one will enter not just a
field of work but a heavily structured set of institutions and that one’s agency and responsibility for what
happens, what work gets done, its quality and value, will be affected accordingly.

Indicative Literature

Hull, David L. "Science as a Process." Science as a Process. University of Chicago Press, 2010;

Feinberg, Joel. "Doing & deserving; essays in the theory of responsibility." (1970).

Usability and Relationship to other Modules

Examination Type: Module Examination

Assessment Type: Written examination Duration/Length: 120 min
 Weight: 100%
Scope: All intended learning outcomes of the module

Completion: To pass this module, the examination has to be passed with at least 45%

116

 Community Impact Project

Module Name Module Code Level (type) CP
Community Impact Project CTNS-CIP-10 Year 3

(New Skills)
5

Module Components

Number Name Type CP
CTNS-10 Community Impact Project Project 5

Module Coordinator

CIP Faculty Coordinator

Program Affiliation

• CONSTRUCTOR Track Area

Mandatory Status

Mandatory elective

Entry Requirements

Pre-requisites

☒ at least 15 CP from
CORE modules in the
major

Co-requisites

☒ None

Knowledge, Abilities, or
Skills

Basic knowledge of the
main concepts and
methodological
instruments of the
respective disciplines

Frequency

Annually
(Spring)

Forms of Learning and
Teaching

• Introductory,

accompanying, and
final events: 10 hours

• Self-organized
teamwork and/or
practical work in the
community: 115
hours

Duration

1 semester

Workload

125 hours

Recommendations for Preparation

Develop or join a community impact project before the 5th or 6th semester based on the introductory events during the
4th semester by using the database of projects, communicating with fellow students and faculty, and finding potential
companies, organizations, or communities to target.
Content and Educational Aims

CIPs are self-organized, major-related, and problem-centered applications of students’ acquired knowledge and skills.
These activities will ideally be connected to their majors so that they will challenge the students’ sense of practical
relevance and social responsibility within the field of their studies. Projects will tackle real issues in their direct and/or
broader social environment. These projects ideally connect the campus community to other communities, companies, or
organizations in a mutually beneficial way.
Students are encouraged to create their own projects and find partners (e.g., companies, schools, NGOs), but will get help
from the CIP faculty coordinator team and faculty mentors to do so. They can join and collaborate in interdisciplinary
groups that attack a given issue from different disciplinary perspectives.
Student activities are self-organized but can draw on the support and guidance of both faculty and the CIP faculty
coordinator team.

Intended Learning Outcomes

The Community Impact Project is designed to convey the required personal and social competencies for enabling students
to finish their studies at Constructor University as socially conscious and responsible graduates (part of the Constructor
University's mission) and to convey social and personal abilities to the students, including a practical awareness of the
societal context and relevance of their academic discipline.

By the end of this project, students will be able to

• understand the real-life issues of communities, organizations, and industries and relate them to concepts in
their own discipline;

• enhance problem-solving skills and develop critical faculty, create solutions to problems, and communicate
these solutions appropriately to their audience;

• apply media and communication skills in diverse and non-peer social contexts;
• develop an awareness of the societal relevance of their own scientific actions and a sense of social

responsibility for their social surroundings;

8.2.10

117

• reflect on their own behavior critically in relation to social expectations and consequences;
• work in a team and deal with diversity, develop cooperation and conflict skills, and strengthen their empathy

and tolerance for ambiguity.

Indicative Literature

Not specified

Usability and Relationship to other Modules

• Students who have accomplished their CIP (6th semester) are encouraged to support their fellow students during
the development phase of the next year’s projects (4th semester).

Examination Type: Module Examination

Project, not numerically graded (pass/fail)
Scope: All intended learning outcomes of the module

118

8.3 Language and Humanities Modules

 Languages

The descriptions of the language modules are provided in a separate document, the “Language Module
Handbook” that can be accessed from the Constructor University’s Language & Community Center
internet sites (https://constructor.university/student-life/language-community-center/learning-
languages).

 Humanities

8.3.2.1 Introduction to Philosophical Ethics

Module Name

Introduction to Philosophical Ethics

Module Code
CTHU-HUM-001

Level (type)
Year 1

CP
2.5

Module Components

Number Name Type CP
CTHU-001 Introduction to Philosophical Ethics Lecture (online) 2.5

Module
Coordinator

Dr. Eoin Ryan

Program Affiliation

• CONSTRUCTOR Track Area

Mandatory Status

Mandatory elective

Entry
Requirements

Pre-requisites

☒ none

Co-requisites

☒ none

Knowledge, Abilities, or
Skills

Frequency

Annually
(Fall / Spring)

Forms of Learning and
Teaching

Online lectures (17.5 h)
Private Study (45h)

Duration

1 semester

Workload

62.5 hours

Recommendations for Preparation

Content and Educational Aims

The nature of morality – how to lead a life that is good for yourself, and how to be good towards others – has been a
central debate in philosophy since the time of Socrates, and it is a topic that continues to be vigorously discussed. This
course will introduce students to some of the key aspects of philosophical ethics, including leading normative theories of
ethics (e.g. consequentialism or utilitarianism, deontology, virtue ethics, natural law ethics, egoism) as well as some
important questions from metaethics (are useful and generalizable ethical claims even possible; what do ethical speech
and ethical judgements actually do or explain) and moral psychology (how do abstract ethical principles do when realized
by human psychologies). The course will describe ideas that are key factors in ethics (free will, happiness, responsibility,
good, evil, religion, rights) and indicate various routes to progress in understanding ethics, as well as some of their
difficulties.

8.3.1

8.3.2

119

Intended Learning Outcomes

Upon completion of this module, students will be able to

1. Describe normative ethical theories such as consequentialism, deontology and virtue ethics.
2. Discuss some metaethical concerns.
3. Analyze ethical language.
4. Highlight complexities and contradictions in typical ethical commitments.
5. Indicate common parameters for ethical discussions at individual and social levels.
6. Analyze notions such as objectivity, subjectivity, universality, pluralism, value.

Indicative Literature

Simon Blackburn, Being Good (2009)

Russ Shafer-Landay, A Concise Introduction to Ethics (2019)

Mark van Roojen, Metaethicas: A Contemporary Introduction (2015)

Usability and Relationship to other Modules

Examination Type: Module Examination

Assessment Type: Written Examination Duration/Length: 60 min
 Weight: 100%
Scope: All intended learning outcomes of the module.

Completion: To pass this module, the examination has to be passed with at least 45%

120

8.3.2.2 Introduction to the Philosophy of Science

Module Name

Introduction to the Philosophy of Science

Module Code
CTHU-HUM-002

Level (type)
Year 1

CP
2.5

Module Components

Number Name Type CP

CTHU-002 Introduction to the Philosophy of Science Lecture (online) 2.5

Module
Coordinator

Dr. Eoin Ryan

Program Affiliation

• CONSTRUCTOR Track Area

Mandatory Status

Mandatory elective

Entry
Requirements

Pre-requisites

☒ none

Co-requisites

☒ none

Knowledge, Abilities, or
Skills

Frequency

Annually
(Fall / Spring)

Forms of Learning and
Teaching

Online lectures (17.5h)
Private Study (45h)

Duration

1 semester

Workload

62.5 hours

Recommendations for Preparation

Content and Educational Aims

This humanities module will introduce students to some of the central ideas in philosophy of science. Topics will include
distinguishing science from pseudo-science, types of inference and the problem of induction, the pros and cons of realism
and anti-realism, the role of explanation, the nature of scientific change, the difference between natural and social
sciences, scientism and the values of science, as well as some examples from philosophy of the special sciences (e.g.,
physics, biology).
The course aims to give students an understanding of how science produces knowledge, and some of the various contexts
and issues which mean this process is never entirely transparent, neutral, or unproblematic. Students will gain a critical
understanding of science as a human practice and technology; this will enable them both to better understand the
importance and success of science, but also how to properly critique science when appropriate.

Intended Learning Outcomes

Upon completion of this module, students will be able to

1. Understand key ideas from the philosophy of science.
2. Discuss different types of inference and rational processes.
3. Describe differences between how the natural sciences, social sciences and humanities discover

knowledge.
4. Identify ways in which science can be more and less value-laden.
5. Illustrate some important conceptual leaps in the history of science.

Indicative Literature

Peter Godfrey-Smith, Theory and Reality (2021)

James Ladyman, Understanding Philosophy of Science (2002)

Paul Song, Philosophy of Science: Perspectives from Scientists (2022)

Usability and Relationship to other Modules

121

Examination Type: Module Examination

Assessment Type: Written Examination Duration/Length: 60 min
 Weight: 100%
Scope: All intended learning outcomes of the module.

Completion: To pass this module, the examination must be passed with at least 45%.

122

8.3.2.3 Introduction to Visual Culture

Module Name
Introduction to Visual Culture

Module Code
 CTHU-HUM-003

Level (type)
Year 1

CP
2.5

Module Components

Number Name Type CP
CTHU-003 Introduction to Visual Culture Lecture (online) 2.5

Module
Coordinator

Dr. Irina Chiaburu

Program Affiliation

• CONSTRUCTOR Track Area

Mandatory Status

Mandatory elective

Entry
Requirements

Pre-requisites

☒ none

Co-requisites

☒ none

Knowledge, Abilities, or Skills

Frequency

Annually
(Spring/Fall)

Forms of Learning and
Teaching

Online Lecture

Duration

1 semester

Workload

62.5 h

Recommendations for Preparation

Content and Educational Aims
Of the five senses, the sense of sight has for a long time occupied the central position in human cultures. As John Berger
has suggested this could be because we can see and recognize the world around us before we learn how to speak. Images
have been with us since the earliest days of the human history. In fact, the earliest records of human history are images
found on cave walls across the world. We use images to capture abstract ideas, to catalogue and organize the world, to
represent the world, to capture specific moments, to trace time and change, to tell stories, to express feelings, to better
understand, to provide evidence and more. At the same time, images exert their power on us, seducing us into believing in
their ‘innocence’, that is into forgetting that as representations they are also interpretations, i.e., a particular version of the
world.

The purpose of this course is to explore multiple ways in which images and the visual in general mediate and structure
human experiences and practices from more specialized discourses, e.g., scientific discourses, to more informal and personal
day-to-day practices, such as self-fashioning in cyberspace. We will look at how social and historical contexts affect how we
see, as well as what is visible and what is not. We will explore the centrality of the visual to the intellectual activity, from
early genres of scientific drawing to visualizations of big data. We will examine whether one can speak of visual culture of
protest, look at the relationship between looking and subjectivity and, most importantly, ponder the relationship between
the visual and the real.

Intended Learning Outcomes
Upon completion of this module, students will be able to

1. Understand a range of key concepts pertaining to visual culture, art theory and cultural analysis
2. Understand the role visuality plays in development and maintenance of political, social, and intellectual

discourses
3. Think critically about images and their contexts
4. Reflect critically on the connection between seeing and knowing

Indicative Literature

• Berger, J., Blomberg, S., Fox, C., Dibb, M., & Hollis, R. (1973). Ways of seeing.
• Foucault, M. (2002). The order of things: an archaeology of the human sciences (Ser. Routledge classics).

Routledge.
• Hunt, L. (2004). Politics, culture, and class in the French revolution: twentieth anniversary edition, with a new

preface (Ser. Studies on the history of society and culture, 1). University of California Press.
• Miller, V. (2020). Understanding digital culture (Second). SAGE.

123

• Thomas, N. (1994). Colonialism's culture: anthropology, travel and government. Polity Press.

Usability and Relationship to other Modules

Examination Type: Module Examination

Assessment: Written examination Duration/Length: 60 min.
 Weight: 100%
Scope: All intended learning outcomes of this module.

Completion: To pass this module, the examination has to be passed with at least 45%

124

Figure 3: Intended Learning Outcomes Assessment-Matrix

9 Appendix

9.1 Intended Learning Outcomes Assessment-Matrix

M
at

he
m

at
ic

al
 F

ou
nd

at
io

ns
 o

f C
om

pu
te

r S
ci

en
ce

Di
gi

ta
l S

ys
te

m
s a

nd
 C

om
pu

te
r A

rc
hi

te
ct

ur
e

Pr
og

ra
m

m
in

g
in

 C
 a

nd
 C

++

Al
go

rit
hm

s a
nd

 D
at

a
St

ru
ct

ur
es

De
ve

lo
pm

en
t i

n
JV

M
 L

an
gu

ag
es

Da
ta

ba
se

s

So
ft

w
ar

e
En

gi
ne

er
in

g

O
pe

ra
tin

g
Sy

st
em

s

Au
to

m
at

a,
 C

om
pu

ta
bi

lit
y,

 a
nd

 C
om

pl
ex

ity

Fu
nc

tio
na

l P
ro

gr
am

m
in

g

Le
ga

l a
nd

 E
th

ic
al

 A
sp

ec
ts

 o
f C

om
pu

te
r S

ci
en

ce

M
ac

hi
ne

 L
ea

rn
ig

Ac
ad

em
ic

 S
ki

lls
 in

 C
om

pu
te

r S
ci

en
ce

Co
m

pu
te

r G
ra

ph
ic

s

 Im
ag

e
Pr

oc
es

sin
g

Di
st

rib
ut

ed
 A

lg
or

ith
m

s

W
eb

 A
pp

lic
at

io
n

De
ve

lo
pm

en
t

Co
m

pu
te

r N
et

w
or

ks

Se
cu

re
 a

nd
 D

ep
en

da
bl

e
Sy

st
em

s

Ba
ch

el
or

 T
he

sis

El
em

en
ts

 o
f L

in
ea

r A
lg

eb
ra

El
em

en
ts

 o
f C

al
cu

lu
s

Pr
ob

ab
ili

ty
 a

nd
 R

an
do

m
 P

ro
ce

ss
es

N
um

er
ic

al
 M

et
ho

ds
/S

ta
tis

tic
s a

nd
 D

at
a

An
al

yt
ic

s

In
te

rn
sh

ip

CT
 N

ew
 S

ki
lls

CT
 G

er
m

an
 la

ng
ua

ge
 a

nd
 H

um
an

iti
es

Semester 1 2 1 2 2 3 4 3 4 3 3 4 4 5 6 6 6 5 6 6 1 2 3 4 5 3-6 1-2
Mandatory/mandatory elective m m m m me m m m m me me me me me me me me me me m me me m me m m me
Credits 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 5 2.5 5 2.5 5 5 5 5 5 5 15 5 5 5 5 15 20 5

Program Learning Outcomes A E P S
Work professionally in the highly dynamic computer
science field and enter graduate programs related to
computer science.

x x

Apply fundamental concepts of computer science
while solving problems.

x x

Think in an analytic way at multiple levels of
abstraction.

x x

Develop, analyze and implement algorithms using
modern software engineering methods.

x x x x x x x x x x x x x

Understand the characteristics of a range of
computing platforms and their advantages and
limitations.

x x x x x x x x x x

Choose from multiple programming paradigms,
languages and algorithms in order to solve a given
problem adequately.

x x x x x x x x x x x x x x x x x

Describe the fundamental theory of computation and
computability.

x x x x

Apply the necessary mathematical methods. x x x x x x
Recognize the context in which computer systems
operate, including interactions with people and the
physical world.

x x x x x x x x x x x x x x x x x

Describe the state of published knowledge in their
field or a specialization within it.

x x x x x x x x x x x x x x x x x

Analyze and model real-life scenarios in
organizations and industries using contemporary
techniques of computer science, also taking methods
and insights of other disciplines into account.

x x x x x x x x x x x x x x x x x

Appropriately communicate solutions of problems in
computer science in both spoken and written form to
specialists and non-specialists.

x x x x x x x x x

Draw scientifically-founded conclusions that consider
social, professional, scientific and ethical aspects. x

Work effectively in a diverse team and take
responsibility in a team.

x x x x x x x x

Take responsibility for their own learnig, personal
and professional development and role in society,
reflecting on their practice and evaluating critical
feedback.

x x x x x

Adhere to and defend ethical, scientific and
professional standards.

x x x x x x x x x x x

Assessment Type
Written examination x
Term paper
Essay x
Project report x
Poster presentation x
Laboratory report
Program Code x x x
Oral examination x
Presentation x x x
Practical Assessments
Project Assessment x x x x x
Portfolio Assessments
Bachelor Thesis x
Module achievements x x x x

Competencies*

*Competencies: A-scientific/academic proficiency; E-competence for qualified employment; P-development of personality; S-competence for engagement in society

Computer Science (BSc.)

,~
,~

	1 Program Overview
	1.1 Concept
	1.1.1 The Constructor University Educational Concept
	1.1.2 Program Concept

	1.2 Specific Advantages of Computer Science at Constructor University
	1.3 Program-Specific Educational Aims
	1.3.1 Qualification Aims
	1.3.2 Intended Learning Outcomes

	1.4 Career Options and Support
	1.5 Admission Requirements
	1.6 More Information and contacts

	2 The Curricular Structure
	2.1 General
	2.2 The Constructor University 4C Model
	2.2.1 Year 1 – CHOICE
	2.2.2 Year 2 – CORE
	2.2.3 Year 3 – CAREER
	2.2.3.1 Internship / Start-up and Career Skills Module
	2.2.3.2 Specialization Modules
	2.2.3.3 Study Abroad
	2.2.3.4 Bachelor Thesis/Seminar Module

	2.3 The CONSTRUCTOR Track
	2.3.1 Methods Modules
	2.3.2 New Skills Modules
	2.3.3 German Language and Humanities Modules

	3 Computer Science as a Minor
	3.1 Qualification Aims
	3.1.1 Intended Learning Outcomes

	3.2 Module Requirements
	3.3 Degree

	4 Computer Science Undergraduate Program Regulations
	4.1 Scope of these Regulations
	4.2 Degree
	4.3 Graduation Requirements

	5 Schematic Study Plan for Computer Science
	6 Study and Examination Plan
	7 Computer Science Modules
	7.1 Programming in C and C++
	7.2 Algorithms and Data Structures
	7.3 Mathematical Foundations of Computer Science
	7.4 Digital Systems and Computer Architecture
	7.5 Development in JVM Languages
	7.6 Databases
	7.7 Software Engineering
	7.8 Operating Systems
	7.9 Machine Learning
	7.10 Functional Programming
	7.11 Automata, Computability, and Complexity
	7.12 Legal and Ethical Aspects of Computer Science
	7.13 Academic Skills in Computer Science
	7.14 Computer Networks
	7.15 Secure and Dependable Systems
	7.16 Computer Graphics
	7.17 Image Processing
	7.18 Distributed Algorithms
	7.19 Web Application Development
	7.20 Computer Vision
	7.21 Human-Computer Interaction
	7.22 Artificial Intelligence
	7.23 Robotics
	7.24 Digital Design
	7.25 Information Theory
	7.26 Parallel and Distributed Computing
	7.27 Internship / Startup and Career Skills
	7.28 Bachelor Thesis and Seminar

	8 CONSTRUCTOR Track Modules
	8.1 Methods Modules
	8.1.1 Elements of Linear Algebra
	8.1.2 Elements of Calculus
	8.1.3 Probability and Random Processes
	8.1.4 Numerical Methods
	8.1.5 Statistics and Data Analytics
	8.1.6 Matrix Algebra and Advanced Calculus I
	8.1.7 Matrix Algebra and Advanced Calculus II

	8.2 New Skills
	8.2.1 Logic (perspective I)
	8.2.2 Logic (perspective II)
	8.2.3 Causation and Correlation (perspective I)
	8.2.4 Causation and Correlation (perspective II)
	8.2.5 Linear Model and Matrices
	8.2.6 Complex Problem Solving
	8.2.7 Argumentation, Data Visualization and Communication (perspective I)
	8.2.8 Argumentation, Data Visualization and Communication (perspective II)
	8.2.9 Agency, Leadership, and Accountability
	8.2.10 Community Impact Project

	8.3 Language and Humanities Modules
	8.3.1 Languages
	8.3.2 Humanities
	8.3.2.1 Introduction to Philosophical Ethics
	8.3.2.2 Introduction to the Philosophy of Science
	8.3.2.3 Introduction to Visual Culture

	9 Appendix
	9.1 Intended Learning Outcomes Assessment-Matrix

