C>ONSTRUCTOR
UNIVERSITY

Study
Program
Handbook

Advanced Software
Technology

Master of Science

Subject-specific Examination Regulations for Advanced Software Technology

The subject-specific examination regulations for Advanced Software Technology are defined by this program
handbook and are valid only in combination with the General Examination Regulations for Master degree
programs (“General Master Policies”).

This handbook also contains the program-specific Study and Examination Plan in chapter 2.2.

Upon graduation students in this program will receive a Master of Science (MSc) degree with a scope of 120

ECTS credit points (for specifics see chapter 2 and 5 of this handbook).

Valid for all students starting their studies in Fall 2025.

June 28, 2023

May 24, 2023

Version Valid as of Decision Details

Fall 2025- V1.1 Feb 02, 2026 Implementation of Examination
Concept according to policies.

Fall 2025-V1 Sep 01, 2025

Academic Senate approval of
study program name change
from “Data Science and
Software Development” to
“Advanced Software Technology

Originally approved by Academic
Senate

Contents

1

Program OVEIVIEW.cecieeuieeerenerenerenerenerescrenseessenssrassrasssesssesssessssnsssnsssnsesnsesasssansssnnes 5
1.1 (@1e] g [o1=] o) ST OPPPPUPPPIRY 5
1.2 QUATIFICAtION ATMS .ot sttt s b e e bt e sbeesme e st eaeeeeees 6

1.2.1 EUCAtIONAT ATMS ..ttt sttt sb e s e es

1.2.2 Intended Learning OULCOMESuuviiiiiie ittt e e e ettt e e e e e e estr e e e e e e e e esnbraaeeeeeeseennnreaeeens
1.3 I T8 (= 2V Lo 1T o T T U UUTN 8
1.4 (@7 1 /== o @«) o 1= 9
15 WY L e TRy [T = To [=T s g =T o PSR 9
1.6 More information and CONTACEScooeiiiiiiiiiieeeee e 10

The CUTICUIUM ... s ssa s s s s s e s e e e sanes 11
2.1 The CUrriculum at @ GIANCEoouiiiieieeie ettt s 11
2.2 Study and EXamination PIancocuiieioiiee et 12
2.3 COIE AIEA (B0 CP).eeeeeee ettt ettt ettt ettt e e ettt e e e e bt e e e e tae e e e e bbeeesesaaeeeessaeesenssaeeeannreeaaan 14
2.4 ElECHIVE ArEa (30 CP)..eeeeiee ettt ettt ettt ettt e e e ata e e e eeabae e e eeabbeeeeeataeeesentaeeesanraeeesanes 14
2.5 ManagemMeENT Ar€a (L5 CP) ..uviiiiiiiee ettt ettt ree e e e eate e e e s eate e e e sentaeeesentaeeesantaeaesanes 15
2.6 Capstone project, Research project and Master Thesis (45 CP)evevecveeeeccveeeeccieee e, 15

Advanced Software Technology Graduate Program Regulations.........ccccccceueireencrennnens 17
3.1 Scope of These REGUIGLIONSceiiiiiiieciiee et e e e e e e e 17
3.2 EXaminNation CONCEPL....ciiiiiiiiiiiiiiiieieeeerer e e e s et e e e e s e e e e e e e e e e e eeeeseseeeeesesesasesesesesasaees 17
3.3 D= =4 g YUt 17
34 Graduation REQUINEMENTESuuiiiiieee e ccciietee e ettt e e e e e e et e e e e e e s s nbrreeeeaeeeesnnrsaaeeeaaeens 18

Advanced Software Technology MOdUIESccecereeeerieeerieniereenierenertenierennereenereannnes 19

4.1.1 RESEANCN SEIMINAT ..ciiiiiiiiie ettt st e sar e s b e e sab e sbe e e smreesneeesanes

4.1.2 Programming Languages in Software Developmentcccueeivciieeiiiiiee e

4,13 Maching LEArNiNG OVEIVIEWc.uveieiiiiieeeiieieeseitee e ecttreeeseataeeesentaeessentaeeesntaeeesantaeeesassaeessanes

4.1.4 DeVEloPMENT ECOSYSTEM .. .uiiiiiiiiiie e ccieee ettt e e e ette e e e eate e e e senta e e e sntaeeesntaeeesantaeassnes

4.1.5 ArCItECtUIAl SErAtEEY ...uviiiiii i re e e e e s e e re e e e e e e e e e anneeaeeeas

4.1.6) =Y (ol e g T4 =T g A g T | Y2y LSRN

4.1.7 (O TUE LV g Y= T YT o T oY -

4.1.8 DEEP LBAMMING . ciiiiiiiiiiiiiiiiiieiiiieeeee ettt et et ettt et te e e et e e e ee et e tee et e e esee et eeeaeeaeereeeeeeeeeseseseeeeeeeseseeanns

4.1.9 Optimization Methods in Maching LEarning.........ccceeeeiiieeeiciiiie et e e

4.1.10 Machine Learning in Software ENgiNEering.........cooeccuiiiiieeiiiccciiiieee et e e eecrrre e e e e

4.1.11 Machine Learning APPliCatioNScceeii it e e e e e e e e e arn e e e e e e e

4.1.12 Bayesian Methods in Maching LEarning.........ccccueeeeciieeiiiiiiieeesiiee e eciee e eeree e eeree e svae e e e

4.1.13 Deep Bayesian IMOUEISooiiiiiiiiiiiee ettt e e re e e rbae e e et e e e e eabre e s e arae e e enaraeas 51

N B -y = T AN 1= AV o oL USRS 54
0 N T {1 T} oY oY 0 01T o o =Y o 11 = SRR 57
4.1.16 Large Scale Deep Learning MOMEIS........ccccuieiiiciiiiiiiee ettt e e e e e 60
4.1.17 Industrial Machine Learning on Hadoop and Sparkcccceeeeiiee e 63
4.1.18 Big Data SOftware ENGINEEIINGceiiiiiiiiiiiieee ettt e et e e e e e e e earee e e e e e e e e e asrsaeeeeeaeeas 65
1 S T @ Vo o ={ -1 o] o 1 SRR 68
4.1.20 SYStEM SECUIILY cooeieeeeeeeeee e, 71
g O R 11 VYT o [T <ol ¥ [1 SRR 74
0t A [0 1 0 117 o] o] 5 1 =T o SRR 77
4.1.23 Advanced Functional Programmingcccuuvieeriiiieiiiiiieeee e eeccireee e e e e e eeanre e e e e e e e esnnrsaaeeeeeeeas 80
4.1.24 Virtual Machings in COMPIlEIS......uueiiii it e e e e e e e e e e e e saraaaeeaaaeeas 83
4.1.25 FOrmal VerifiCation ..c..cooeeiii ittt sttt 85
O L I 0 1T o 1Y g Vo 1= o IV o TSRS 87
O A V7o T I =Y o YU 89
4.1.28 Category Theory for PrOogrammers. ... uiiiieee ettt e e et e e e e e e aate e e e e e e e esnnraaeeeaeeeeas 92
4.1.29 CapsStone ProjecCt L., 94
4.1.30 Capstone ProjJeCt . 97
4.1.31 Capstone ProjJeCt ..o, 100
4.1.32 Technological Entrepreneurship L.ttt e errree e e e e e reae e 103
4.1.33 Technological ENtrepren@uIship 2. ...ttt e e e e e e e e e e enrreaeeeas 106
Y S [=T o T 1o SRS 108
e L S (T <= Y ol o T o o =Y ot USSR 110
411 MASTEE THESIS AST ..ttt ettt e s bt e st st st s b st e b e beesbeesmeeemeeenneennees 112
Management IMOUIESc..cieeiiiieiiiiiiciecereeerreeereneerenssrnnsssensserensessensesennsesennns 115
5.1.1 Agile Product Development & DESIZNcuviiiecieee ittt e e et eaae e e e 115
5.1.2 Product INNovation & Marketing.......ccueeeiciiieiiiiiee et rtee e e e arae e enes 118
5.1.3 Entrepreneurship and Intrapreneurshipc.ueeeeii i 120
5.1.4 Agile Leadership and Strategic Management........occuviiiieieeeecccciieee e e 123
FY oY o 1= o Ve [GO 125

6.1 Intended Learning Outcomes Assessment-MatriXccccveereeiiicciiiiiieee e e e e 125

1 Program Overview

1.1 Concept

The Master of Science in Advanced Software Technology at Constructor University is a
consecutive master program that prepares students to become the next generation of experts
in the field of advanced software technology. The program offers a unique opportunity to gain
a solid education in software development, data science and programming languages, which
are at the forefront of digitalization and are driving the digital transformation of industry and
society. The program is designed to provide students with a solid foundation in Mathematics
and basic programming skills, a comprehensive understanding of the latest research and
technology in these areas, as well as essential management and leadership skills, so that they
can become technology leaders in research and industry.

The program offers three tracks: Data Science, Software Development, and Programming
Languages, allowing students to specialize in the area of their choice. The program also
includes common modules for all students, such as Architectural Strategy, Programming
Languages in Software Development, Big Data Software Engineering, Capstone Project,
Technological Entrepreneurship, Product Innovation & Marketing, Quality Engineering, Kotlin
Ecosystem, Data Analytics, and Agile Product Development & Design.

The special modules for the Data Science track include Machine Learning Applications,
Computer Vision, Machine Learning in Software Engineering, and Bayesian Methods in
Machine Learning. The special modules for the Software Development track include Static
Program Analysis, System Security, Cryptography, Network Security and IDE Development. For
the Programming Languages track, the special modules are Advanced Functional
Programming, Formal Verification, Virtual Machines in Compilers, Dependent Types, Type
Theory, and Category Theory for Programmers.

The program will be taught by distinguished experts in the field from Constructor University
and JetBrains, guaranteeing excellent teaching competence and hands-on experience from
the forefront of the state of the art in research and industry. In addition, students will have
access to real-world applications and the IT job market via JetBrains’ excellent international
network, and will be supported by the Constructor University Student Career Support.

The program will also make use of contemporary blended e-learning techniques, flipped
classroom teaching, and team-based work on software projects, allowing for a student-centric
and hands-on experience. Together with the availability of state-of-the-art software and
hardware at Constructor University and the support of JetBrains, the program allows seamless
collaboration among students and instructors of different institutions, and adapts to
conditions that may arise from pandemic emergencies.

Students will acquire the core expertise of digital leaders, with a solid technological backbone
developed along three complementary tracks, with additional core management and
leadership skills. They will acquire the essential soft skills for an active digital technology

5

leadership in the contemporary global and multiethnic society, thanks to the international
environment that characterizes Constructor University and JetBrains. Overall, this education
will enable them to enter research via Ph.D. programs and to succeed in the job market in high
profile roles.

1.2 Qualification Aims

1.2.1 Educational Aims

The MSc Advanced Software Technology program at Constructor University aims to provide
students with an in-depth understanding of the essential aspects of designing and
development of software products with a focus on Data Science. The program comprises three
main tracks: Data Science, Software Development, and Programming Languages Tools.
Students will acquire the skills necessary to apply methods and tools to successfully and
responsibly engineer software, with a special emphasis on the use of JetBrains tools.

The program seeks to expand the participant's competencies and capabilities in the subject
areas of Data Science, Software Development and Programming Languages, which play a
dominant role in industries and research. Each student will select one of these areas as their
main specialization, and the curriculum will provide them with modern cross-disciplinary
leadership and management competencies to become tomorrow's digital leaders.

Throughout the program, students will be introduced to practical and research-oriented work
through a Capstone project, an elective research project, and a thesis, which will be supported
by frequent individual feedback sessions and personal guidance. This will facilitate and
quicken the students' career development and help them to become valuable assets in
industries and research within a short period of time.

Constructor University programs are offered in a highly intercultural environment. Students
will acquire intercultural competence as part of their education through everyday group work,
class participation, and extracurricular activities. In this way, students will gain practical
intercultural competencies and build their confidence in an English-speaking work and study
environment.

To summarize, graduates of the MSc Advanced Software Technology program will have
obtained the following competences and skills:

1. Subject-matter competence in a Data Science, Software Development or Programming
Languages specialization

Graduates will have an in-depth knowledge of one of the fields of Data Science, Software
Development or Programming Languages. They will be able to define and interpret the
doctrine of the field, and will have also developed a detailed and critical understanding at the
cutting edge of knowledge in the field.

2. Advanced Software Technology Competency

Graduates will have a broadened and deepened knowledge in their formal, algorithmic, and
applied competencies in Advanced Software Technology. This will enable them to develop
independent ideas as digital experts.

3. Learning, transfer, and research skills

The Program will enable students to apply problem solutions in new and unfamiliar situations.
They will integrate learned skills in complex and multidisciplinary contexts, as it is more and
more necessary in industry and research. In particular, graduates will be able to design
research questions, select appropriate methods, and document and interpret research results.

4. Management and Leadership Skills

Recognizing the ever-increasing need for management and leadership skills in business,
industry and research, graduates will have a broad and integrated knowledge and
understanding of the fundamentals from management and leadership. Their knowledge
corresponds to the standard literature in the field. In particular, they will be able to solve
related problems in the field of Advanced Software Technology with professional plausibility.

5. Teamwork and communication skills

Graduates will be proficient in the specialized exchange of ideas in a group setting with the
goal of collaborative development of a digital software or hardware system. This will be
reinforced by effective and reflective practice of communication and collaboration on both
academic and non-academic topics.

6. Personal and Professional Competence

Graduates will be able to make, justify and reflect on decisions based on theoretical and
professional knowledge. They will be able to critically examine their own behavior and assess
social consequences. In doing so, they will act appropriately to the situation. Thus, they will
be able to develop a professional profile both in and out of academia.

1.2.2 Intended Learning Outcomes
Upon completion of this program, students will be able to

1. critically assess and creatively apply technological possibilities and innovations in the
fields of data science, software development and programming languages;

2. critically assess and apply software engineering methodologies considering real life
situations, organizations and industries;

3. use, adapt and improve modern techniques in data science, such as deep learning,
recommender systems, computer vision, and machine learning in software
engineering;

4. apply cross-disciplinary management methodologies to solve academic and
professional problems in the context of software development and data science;

5. critically assess and integrate a consistent tool set of leadership abilities into a
professional work environment;

6. plan, conduct and document small research projects in the context of data science,
software development and programming languages;

7. independently research, document and present a scientific topic with appropriate
language skills;

8. use scientific methods as appropriate in the field of data science and software
engineering such as defining research questions, justifying methods, collecting,
assessing and interpreting relevant information, and drawing scientifically-founded
conclusions that consider social, scientific and ethical insights;

9. develop and advance solutions to problems and arguments in their subject area and
defend these in discussions with specialists and non-specialists;

10. engage ethically with academic, professional and wider communities and to actively
contribute to a sustainable future, reflecting and respecting different views;

11. take responsibility for their own learning, personal and professional development and
role in society, evaluating critical feedback and self-analysis;

12. apply their knowledge and understanding of data science, software development, and
programming languages to a professional context;

13. take on responsibility in a diverse team;

14. adhere to and defend ethical, scientific and professional standards;

15. apply data analytics techniques;

16. understand and utilize agile product development and design methodologies;

17. understand and apply principles of quality engineering.

1.3 Target Audience

The MSc Advanced Software Technology Program at Constructor University is designed for
students of diverse backgrounds, with a focus on those who have completed an
undergraduate program in Computer Science or a related field. The program is tailored for
graduates who are interested in gaining advanced knowledge and skills in the fields of Data
Science, Software Development and Programming Languages.

This program is particularly suitable for candidates who are dedicated to and interested in
gaining theoretical and application-oriented knowledge in the fields of Data Science, Machine
Learning, Software Engineering, Cybersecurity, Artificial Intelligence, and Programming
Languages.

The program prepares students for key roles in the IT industry, as well as for entering research
in the subject fields. Additionally, the program provides students with additional educational
opportunities in management and leadership, which can prepare them to develop their own
start-up. The program's educational approach encourages exchange and discussion within the
student community, making the willingness to interact, appreciate different teaching and
learning formats, accept challenges and develop professionally during study, important
requirements for successful participation in the program.
8

1.4 Career Options

The field of Advanced Software Technology is rapidly growing and in high demand as more
and more companies are recognizing the value of data-driven decision making. Graduates of
the MSc Advanced Software Technology program at Constructor University will be well-
equipped to enter a variety of exciting and rewarding careers in the IT industry.

Graduates of this program will be well-prepared for roles in data analysis and software
development, such as data scientists, software engineers, and machine learning engineers.
They will also be able to work in a wide range of industries, including finance, healthcare,
education, and technology. The program's focus on advanced software technology provides
students with a versatile skill set that will be highly valued by employers.

Constructor University's Student Career Services and Alumni Association, as well as the
university's partnerships with leading technology companies such as JetBrains, Acronis,
Alemira, Virtuozzo and Rolos, will provide students with valuable support and opportunities
for professional growth. The Student Career Services offers high-quality training and coaching
in application and interview preparation, effective presenting, business etiquette, and
employer research, while the Alumni Association helps students establish a long-lasting
worldwide network. These resources, along with the university's industry connections, will
help graduates succeed in their chosen careers.

1.5 Admission Requirements

The Advanced Software Technology graduate program requires students to have completed
an undergraduate program in computer science, data science, software development,
information technology or another discipline with at least 60 ECTS of computer science-
related topics (such as mathematics, programming, design, software architecture).

Admission to Constructor University is selective and based on a candidate’s university
achievements, recommendations and self-presentation. Students admitted to Constructor
University demonstrate exceptional academic achievements, intellectual creativity, and the
desire and motivation to make a difference in the world.

The following documents need to be submitted with the application:

e Letter of motivation

e Curriculum vitae (CV)

e Official or certified copies of university transcripts

e Bachelor’s degree certificate or equivalent

e Language proficiency test results (minimum score of 90 (TOEFL), 6.5 (IELTS) or 110
(Duolingo)).

e Copy of Passport

e Letter of recommendation (optional).

Formal admission requirements are subject to higher education law and are outlined in the
Admission and Enrollment Policy of Constructor University.

For more detailed information about the admission visit:

https://constructor.university/admission-aid/application-information-graduate.

1.6 More information and contacts

For more information on the study program please contact the Study Program Coordinator:

Prof. Dr. Alexander Omelchenko
Professor of Applied Mathematics, Data Science and Computing

Email: aomelchenko@constructor.university

or visit our program website: Advanced Software Technology | Constructor University

For more information on Student Services please visit:
https://constructor.university/student-life/student-service

10

https://constructor.university/admission-aid/application-information-graduate
mailto:aomelchenko@constructor.university
https://constructor.university/programs/graduate-education/advanced-software-technology

2 The Curriculum

2.1 The Curriculum at a Glance

The Advanced Software Technology graduate program is composed of foundational lectures,
specialized modules, and applied project work, leading to a master thesis that can be conducted in
research groups at Constructor University, at external research institutes or in close collaboration
with a company. The program takes four semesters (two years). The following table shows an
overview of the modular structure of the program. The program is sectioned into two areas (AST and
Management modules) and the Master Thesis. All credit points (CP) are ECTS (European Credit
Transfer System) credit points. In order to graduate, students need to obtain 120 CP. See Chapter 3
“Modules” of this handbook for the detailed module descriptions or refer to CampusNet.

C>ONSTRUCTOR
C>ONSTRUCTOR
UNIVERSITY
Master Degree in Advanced Software Technology (120 CP)
4th . .
S Master Thesis / Seminar
m, 30CP
I Internship me, 10 CP I
3rd
Semester Elective Elective Elective Research Project || capstone Project Agils Product
Development & Design
me. 5 CP me, 5 CP me, 5 CP me, 5 CP e 5cp e e op
Architectural Strate " .
- OR e Static ngt::m Analysis Electi Technological Productinnovation &
PR i eclive i Marketi
SeTesteT thlmlza_tuon Melh_ods Machine Learningin Research Seminar Erg;nppsr'enr:‘eeu;s}:jf;ﬁ)ll arketing
in Machine Learning Software E"gi""rina
me, 5 CP| me, 5 CP m, 5CP me, 5 CP me, 5 CP m, 5CP
Entrepreneur Agile
Machine Learning Development Programmin: . ship & Leadership
Overview Ecosystem 9 g - rechr < & Strategic
orR Languages in Elective Entrepreneurship 1 OR ship Management
D ER) Quality Engineerin Software Development Capstone Project|
oop Learning. g .5 gp m, 5CP me, 5 CP me, 5 CP m, 2.5CP I, 25 CP

CORE Technical Content m

CP: Credit Points

m: mandatory
me: mandatory elective

2.2 Study and Examination Plan

MSc Degree in Advanced Software Technology

Matriculation Fall 2025
Module Code Program-Specific Modules Type Assessment Period' Status’> Semester CP
Semester 1 30
Unit: CORE modules 20
MCSSE-SE-02 Module: Quality Engineering me 5
MCSSE-SE-02 Quality Engineering Lecture Portfolio During semester
MCSSE-AI-01 Module: Deep Learning me "5
MCSSE-AI-01 Deep Learning Lecture Written examination Examination period
MAST-101 Module: Development Ecosystem me 5
MAST-101-A Development Ecosystem Lecture /Tutorial Program Code Examination period
MAST-114 Module: Machine Learning Overview me "5
MAST-114-A Machine Learning Overview Lecture Program Code During semester
MAST-102 Module: Progr ing Languages in Software Development m "5
MAST-102-A Programming Languages in Software Development Lecture/Tutorial Program code During semester
Further CORE modules me 5
- students choose 1 module from those listed below
Unit: Capstone Project 5
MCSSE-CAP-01 Module: Capstone Project 1 me 5
MCSSE-CAP-01 Capstone Project 1 Project Project Assessment During semester
MAST-111 Module: Technological Entrepreneurship 1 me "5
MAST-111-A Technological Entrepreneurship 1 Lecture Project Assessment During semester
Unit: Management and Leadership Modules 5
MCSSE-LAS-01 Module: Entrepreneurship & Intrapreneurship m 2.5
MCSSE-LAS-01 Entrepreneurship & Intrapreneurship Lecture Presentation During semester
MCSSE-LAS-03 Module: Agile Leadership and Strategic Manage ment m 2.5
MCSSE-LAS-03 Agile Leadership and Strategic Management Lecture Presentation During semester
Semester 2 30
Unit: CORE modules 20
MCSSE-SE-03 Module: Architectural Strategy me 5
MCSSE-SE-03 Architectural Strategy Lecture Portfolio During semester
MAST-203 Module: Machine Learning in Software Engineering "5
MAST-203-A Machine Learning in Software Engineering Lecture Written Examination Examination period 2.5
MAST-203-B Machine Learning in Software Engineering - Tutorial Tutorial Practical Assessment During semester 2.5
MAST-110 Module: Optimization Methods in Machine Learning me 5
MAST-110-A Optimization Methods in Machine Learning Lecture Written Examination Examination period 2.5
MAST-110-B Optimization Methods in Machine Learning - Tutorial Tutorial Program Code During semester 2.5
MAST-205 Module: Static Program Analysis me "5
MAST-205-A |Swtic Program Analysis Lecture Oral Examination Examination period 2.5
MAST-205-B |Static Program Analysis Tutorial Tutorial Practical Assessment During semester 2.5
MAST-115 Module: Research Seminar m 75
MAST-115-A Research Seminar Seminar Presentation During Semester
Further CORE modules me 5
- students choose 1 module from those listed below
Unit: Capstone Project 5
MCSSE-CAP-02 Module: Capstone Project 2 me 5
MCSSE-CAP-02 Capstone Project 2 Project Project Assessment During semester
MAST-112 Module: Technological Entrepreneurship 2 me 5
MAST-112-A Technological Entrepreneurship 2 Lecture Project Assessment During semester
Management Modules 5
MCSSE-MGT-02 Module: Product Innovation & Marketing m 5
MCSSE-MGT-02 Product Innovation & Marketing Lecture Presentation During semester
Semester 3 30
Unit: CORE modules 20
Further CORE modules me 20
- students choose 4 modules from those listed below. One CORE module can be replaced by the Research Project module.
Unit: Capstone Project 5
MCSSE-CAP-03 Module: Capstone Project 3 me 5
MCSSE-CAP-03 Capstone Project 3 Project Project Assessment During semester
Unit: Management and Leadership Modules 5
MCSSE-MGT-01 Module: Agile Product Development & Design m 5
MCSSE-MGT-01 Agile Product Development & Design Lecture Presentation Examination period
Semester 4 30
Master Thesis 30
MAST-300 Module: Master Thesis MSc AST m 30
MAST-300-T Master Thesis AST Thesis
Total CP 120

! Each lecture period lasts 14 semester weeks and is followed by reading and examination days. Written examinations are centrally scheduled during weeks 15 and 16. For all

*m = mandatory, me = mandatory elective

12

Further CORE modules

Module Code Program-Spe cific Modules Type Assessment Period' Status® Semester CP
Data Science Track
MAST-113 Module: Industrial Machine Learning on Hadoop and me 24 5

Spark
MAST-113-A Hadoop and Spark Theory Lecture . 2.5

X B " K Program code During semester

MAST-113-B Industrial Machine Learning Tutorial 2.5
MAST-202 Module: Machine Learning Applications me 3 5
MAST-202-A Machine Learning Applications Lecture/ Tutorial Program code During semester
MAST-203 Module: Machine Learning in Software Engineering me 2 B
MAST-203-A Machine Learning in Software Engineering Lecture Written examination Examination Period 2.5
MAST-203-B Machine Learning in Software Engineering Tutorial Tutorial Practical assessment During semester 2.5
MAST-204 Module: Bayesian Methods in Machine Learning me 1 5
MAST-204-A Bayesian Methods in Machine Learning Lecture Written examination Examination Period 2.5
MAST-204-B Bayesian Methods in Machine Learning Tutorial Tutorial Program code During semester 2.5
MAST-109 Module: Deep Bayesian Models me 2 5
MAST-109-A Deep Bayesian Models Lecture Written examination Examination Period 2.5
MAST-109-B Deep Bayesian Models Tutorial Tutorial Program code During semester 2.5
MAST-212 Reinforcement Learning me 3 5
MAST-212-A Reinforcement Learning Lecture Wiritten examination Examination Period 2.5
MAST-212-B Reinforcement Learning Tutorial Tutorial Program code During semester 2.5
MDE-CO-02 Module: Data Analytics me 1 5
MDE-CO-02 Data Analytics Lecture Project report During semester
MAST-213 Large Scale Deep Learning Models me 3 5
MAST-213-A Large Scale Deep Learning Models Lecture Written examination Examination Period 2.5
MAST-213-B Large Scale Deep Learning Models Tutorial Tutorial Program code During semester 2.5
Software Development Track
MAST-205 Module: Static Program Analysis me %) 5
MAST-205-A Static Program Analysis Lecture Oral examination ~ Examination Period 25
MAST-205-B Static Program Analysis Tutorial Tutorial Practical assessment During semester 2.5
MCSSE-CYB-01 Module: Cryptography me 1 5
MCSSE-CYB-01 Cryptography Lecture Written examination Examination Period
MCSSE-CYB-02 Module: System Security me 2 5
MCSSE-CYB-02 System Security Lecture Written examination Examination Period
MCSSE-CYB-03 Module: Network Security me 3 5
MCSSE-CYB-03 Network Security Lecture Written examination Examination Period
MAST-103 Module: Big Data Software Engineering me 2 "5
MAST-103-A Big Data Software Engineering Lecture/Tutorial Program code During semester
MAST-207 Module: IDE Development me 1 5
MAST-207-A IDE Development Lecture/ Tutorial Program code During semester
Programming Languages Track
MAST-104 Module: Advanced Functional Programming me 1 5
MAST-104-A Advanced Functional Programming Lecture Written examination Examination Period 2.5
MAST-104-B Advanced Functional Programming Tutorial Tutorial Program code During semester 2.5
MAST-214 Module: Formal Verification me 3 5
MAST-214-A Formal Verification Lecture/Tutorial Program code During semester "5
MAST-106 Module: Virtual Machines in Compilers me 1/3 5
MAST-106-A Virtual Machines in Compilers Lecture/Tutorial Program code During semester 2.5
MAST-209 Module: Dependent Types me 3 5
MAST-209-A Dependent Types Lecture/ Tutorial Practical assessments During semester
MAST-210 Module: Type Theory me 3 5
MAST-210-A Type Theory Lecture/Tutorial Program code During semester
MAST-211 Module: Category Theory for Programmers me 2 5
MAST-211-A Category Theory for Programmers Lecture / Tutorial ~ Written examination Examination Period

Research Project 5
MAST-201 Module: Research Project me 3 5
MAST-201-A Research Project Project Project Report Examination period

Figure 2: Study and Examination Plan

13

2.3 Core Area (30 CP)

This area is the centerpiece of the Advanced Software Technology program. The six mandatory
modules in the Core Area cover essential methods of Advanced Software Technology. They provide
the foundations for further, more advanced modules and applied projects by introducing the
fundamental concepts, methods and technologies used in Advanced Software Technology. The
modules are intensive courses accompanied by hands-on tutorials and labs.

To pursue an AST master, the following CORE modules (10 CP) need to be taken as mandatory modules
(m):

e CORE Module: Research Seminar (m, 5 CP)
e CORE Module: Programming Languages in Software Development (m, 5 CP)

Further 20 CP must be taken from the following CORE modules need to be taken:

e CORE Module: Machine Learning Overview (me, 5 CP) OR Deep Learning (me, 5 CP)

e CORE Module: Development Ecosystem (me, 5 CP) OR Quality Engineering (me, 5 CP)

e CORE Module: Architectural Strategy (me, 5 CP) OR Optimization Methods in Machine
Learning (me, 5 CP)

e CORE Module: Static Program Analysis (me, 5CP) OR Machine Learning in Software Engineering
(me, 5 CP)

2.4 Elective Area (30 CP)

The Advanced Software Technology program attracts students with diverse career goals, backgrounds,
and prior work experience. Therefore, modules in this area can be chosen freely by students depending
on their prior knowledge and interests. Students can choose to strengthen their knowledge by
following one of suggested focus tracks and electing the modules offered therein: Data Science,
Software Development, and Programming Languages.

Students may choose any combination of the modules listed below. Each track may be followed
completely and/or complemented with other modules). In addition to the modules offered within
these focus tracks, 3rd year modules from the undergraduate curriculum or other graduate programs
at Constructor University can be taken with the approval of the program coordinator. Please see
CampusNet for current offerings.

To pursue an AST master, students choose the following Electives modules (30 CP) as mandatory
elective modules (me):

Data Science Track:

e Elective Module: Machine Learning Applications (me, 5 CP)

e Elective Module: Bayesian Methods in Machine Learning (me, 5 CP)

e Elective Module: Deep Bayesian Models (me, 5 CP)

e Elective Module: Data Analytics (me, 5 CP)

e Elective Module: Reinforcement Learning (me, 5 CP)

e Elective Module: Large Scale Deep Learning Models (me, 5 CP)

e Elective Module: Industrial Machine Learning on Hadoop and Spark (me, 5CP)

14

Software Development Track:

e Elective Module: Big Data Software Engineering (me, 5 CP)
e Elective Module: Cryptography (me, 5 CP)

e Elective Module: System Security (me, 5 CP)

e Elective Module: Network Security (me, 5 CP)

e Elective Module: IDE Development (me, 5 CP)

Programming Language Track:

e Elective Module: Advanced Functional Programming (me, 5 CP)
e Elective Module: Virtual Machines in Compilers (me, 5 CP)

e Elective Module: Formal Verification (me, 5 CP)

e Elective Module: Dependent Types (me, 5 CP)

e Elective Module: Type Theory (me, 5 CP)

e Elective Module: Category Theory for Programmers (me, 5 CP)

2.5 Management Area (15 CP)

To equip students with market-relevant management skills they take modules in the fields of product
development, marketing and change management. All modules are mandatory for the program.

To pursue an AST master, the following Management modules (15 CP) need to be taken as mandatory
modules (m):

e Management Module: Agile Product Development & Design (m, 5 CP)

e Management Module: Product Innovation & Marketing (m, 5 CP)

e Management Module: Entrepreneurship & Intrapreneurship (m, 2.5 CP)

e Management Module: Agile Leadership and Strategic Management (m, 2.5 CP)

2.6 Capstone project, Research project and Master Thesis (45 CP)

To explore the full development process of a software application with relation to the areas of
specialization of the program, all students take the following in their first and second semesters:

e (Capstone Module: Capstone Project 1 (me, 5 CP) OR Technological Entrepreneurship 1 (me,
5CP)

e (Capstone Module: Capstone Project 2 (me, 5 CP) OR Technological Entrepreneurship 2 (me,
5CP)

Alternatively, students can take the 10 ECTS Internship module in place of the following modules:
“Capstone 3”, and one elective module.

15

e Capstone Module: Capstone Project 3 (me, 5 CP)
e Elective Module of choice (me, 5 CP)

Students can replace in their third semester one Elective Module with the Research Project (5 CP):
Research Project Module: Research Project (me, 5 CP)

Students with a strong drive towards academic research can replace in their third semester one
Elective Module by the Research Project, which is carried out in cooperation with JetBrains. The
JetBrains researcher will provide research topics for the students. In the fourth semester, students
conduct research and write a master thesis guided and supported by their academic advisor.

To pursue an AST master, the following Master Thesis module need to be taken as mandatory module:

e Thesis Module: Master Thesis (m, 30 CP)

16

3 Advanced Software Technology Graduate Program Regulations ‘

3.1 Scope of These Regulations

The regulations in this handbook are valid for all students who entered the Advanced Software
Technology graduate program at Constructor University in Fall 2025. In case of conflict between the
regulations in this handbook and the general policies for Master Studies, the latter apply (see
https://constructor.university/student-life/student-services/university-policies).

In exceptional cases, certain necessary deviations from the regulations of this study handbook might
occur during the course of study (e.g., change of the semester sequence, assessment type, or the
teaching mode of courses).

Updates to Study Program Handbooks are based on the policies approved by the Academic Senate on
substantial and nonsubstantial changes to study programs. Students are integrated in the decision-
making process through their respective committee representatives. All students affected by the
changes will be properly informed.

In general, Constructor University therefore reserves the right to change or modify the regulations of
the program handbook also after its publication at any time and in its sole discretion.

3.2 Examination Concept

According to the Policies for Bachelor and Master studies, modules generally carry at least five ECTS.
Each program ensures appropriate examination frequency and organization, justified in an
examination concept and regularly reviewed with student involvement.

Constructor University’s examination concept follows the principle of Constructive Alignment (Biggs
1996), ensuring that learning outcomes, activities, and assessments are consistently aligned: students
learn what is intended, and assessments both measure and shape learning. Where one assessment
cannot cover all Intended Learning Outcomes (ILOs) complementary forms could be used (e.g., written
exams plus lab reports). Module descriptions map ILOs to assessments.

In specific contexts, such as asynchronous online modules or courses emphasizing student
engagement, Module Achievementsor other types of formative assessments may support
competence-oriented assessment.

Student feedback, embedded in the Quality Assurance System (QAS), systematically monitors
workload, competence orientation, and alignment of ILOs and assessments. Student surveys and
feedback are regulated in the Policy for student surveys and evaluations.

3.3 Degree

Upon successful completion of the program, students are awarded a Master of Science (M.Sc.) degree
in Advanced Software Technology.

17

https://constructor.university/student-life/student-services/university-policies

3.4 Graduation Requirements

In order to graduate, students need to obtain 120 CP. In addition, the following graduation

requirements apply:

= In each module, students need to obtain a minimum amount of CP as indicated in chapter 2 of
this handbook.

= Students need to complete all mandatory components of the program as indicated in chapter 2
of this handbook.

18

4 Advanced Software Technology Modules ‘

4.1.1 Research Seminar

Module Name Research Seminar
Module Code 2025-MAST-115
Module ECTS 5
Program Owner 2025-AST-MSc
(Advanced Software Technology)
Module Coordinator Prof. Dr. Alexander Omelchenko
Study Semester
Program Semester | Status
2025-AST-MSc 2 Mandatory
Advanced Software Technology

Student Workload

Independent Study | 104
Research Group Meetings | 21
Total Hours | 125

Module Components Number Type cp
Research Seminar MAST-115-A Seminar 5

Module Description

The Research Seminar aims to equip students with the skills necessary to work with scientific literature,
critically evaluate research findings, and present their insights. Students will select, read, and analyze
scientific papers related to their field of study. They will then prepare and give presentations to their
peers and discuss the topic. This process will help students refine their research interests and select a
suitable thesis topic. The seminar will also introduce the best practices in academic presentation,
argumentation, and peer feedback.

Usability and Relationship to other Modules

This module serves as a preparatory course for the Master thesis. It gives students the skills and
confidence to engage in independent research.

Recommended Knowledge

Students should have foundational knowledge in the fields of their study, such as machine learning,
programming languages, and software engineering.

19

Intended Learning Outcomes

No | Competence ILO
1 | Analyze Analyze and interpret scientific papers critically.
2 | Develop Develop and deliver clear, well-structured academic presentations.
3 | Engage Engage in academic discussions and provide constructive feedback.

Indicative Literature

e Keshav, S. (2007). How to Read a Paper. ACM SIGCOMM Computer Communication Review,
37(3), 83-84.
e Selected recent research papers from top journals and conferences in the relevant field.

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Research Seminar Presentation 30 100 45% 1-3
minutes

Module Achievement

20

4.1.2 Programming Languages in Software Development

Module Name Programming Languages in Software
Development
Module Code 2025-MAST-102
Module ECTS 5
Program Owner 2025-AST-MSc
(Advanced Software Technology)
Module Coordinator Prof. Dr. Timofey Bryksin
Study Semester
Program Semester | Status
2025-AST-MSc 1 Mandatory
Advanced Software Technology
Student Workload
Exam Preparation | 20
Independent Study | 70
Lecture | 17.5
Tutorial | 17.5
Total Hours | 125

Module Components Number Type cp
Programming Languages in Software | MAST-102-A Lecture/Tutorial 5
Development

Module Description

The module aims to provide students comprehensive understanding of the different types of
programming languages and their characteristics, to familiarize them with the syntax and semantics of
a variety of programming languages, including low-level, high-level, functional, logic, concurrent,

parallel, scripting, and domain-specific languages, to teach students how to analyze and compare
different programming languages, and to understand the trade-offs between different language
features, to train students to use different programming languages for different types of software

development tasks, such as web development, data science, and mobile app development, to develop
students' problem-solving skills by applying the programming languages to solve real-world problems.

Content:

- Overview of programming languages: history, classification, and trends.

- Low-level languages: assembly, machine code, and C.

- High-level languages: Java, C#, Python, JavaScript, and Kotlin.

- Functional languages: Haskell, Lisp, and Scala.

- Logic and constraint programming languages: Prolog, and MiniZinc.

21

- Concurrent and parallel programming languages: Erlang, and Go.
- Scripting languages: Perl, Ruby, and Shell.

- Domain-specific languages: SQL, and XML.

Recommended Knowledge

Before taking the course, it's important to have a solid understanding of at least one programming
language, as the course will cover a wide range of languages and paradigms.

Usability and Relationship to other Modules

The course content is designed to provide students with a comprehensive understanding of different
programming languages, including low-level, high-level, functional, logic, concurrent, parallel,
scripting, and domain-specific languages. It covers the history, classification and trends of
programming languages. This would give students the ability to analyze and compare different
languages based on their characteristics, and choose the appropriate language for a given task.

Intended Learning Outcomes

No | Competence ILO

1 | Understand Understand the history and classification of programming
languages, and be able to analyze and compare different languages
based on their characteristics.
2 | Write Write, read, and understand code written in a variety of
programming languages, including low-level, high-level, functional,
logic, concurrent, parallel, scripting, and domain-specific languages.
3 | Use Use different programming languages for different types of software
development tasks, such as web development, data science, and
mobile app development.

4 | Evaluate Evaluate the trade-offs between different language features and
choose the appropriate language for a given task.
5 | Apply Apply their knowledge of programming languages to solve real-

world problems, and develop their problem-solving skills.

Indicative Literature

e Carl A. Gunter: "Introduction to the Theory of Programming Languages", Cambridge University
Press, 1996.

e David A. Watt and Deryck F. Brown: "Programming Languages and Paradigms", Pearson, 2008.

e Michael L. Scott: "Programming Language Pragmatics", Morgan Kaufman Publishers, 2009.

e Robert W. Sebesta: "Concepts of Programming Languages", Addison-Wesley, 2010.

e Terrence W. Pratt and Marvin V. Zelkowitz: "Programming Languages: Design and
Implementation", Prentice Hall, 2004.

Entry Requirements

Prerequisites None

22

Co-requisites None

Additional Remarks None

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Programming Languages | Program Code 100 45% 1-5
in Software Development

Module Achievement

23

4.1.3 Machine Learning Overview

Module Name

Machine Learning Overview

Module Code

2025-MAST-114

Module ECTS

5

Program Owner

2025-AST-MSc
(Advanced Software Technology)

Module Coordinator

Study Semester
Program Semester | Status
2025-AST-MSc 1 Mandatory
Advanced Software Technology Elective

Student Workload

Interactive Learning | 35

Independent Study | 90
Total Hours | 125

Module Components Number Type cp
Machine Learning Overview MAST-114-A Lecture 5

Module Description

This course provides a concise yet comprehensive overview of machine learning (ML) as a tool for
solving practical problems in various computer science domains. It is designed for students with the
foundational knowledge of ML who wish to practice in applications and deepen their understanding.
The course emphasizes the practical usage of ML frameworks and tools, bridging the gap between
theoretical concepts and real-world problem-solving.

Content:

- Overview of machine learning as a discipline. Quick review of foundational ML concepts (regression,

classification, clustering) and ML workflows.

- Supervised Learning

- Unsupervised Learning and Dimensionality Reduction

- Deep Learning Basics
- Application in Natural Language Processing
- Applications in Computer Vision

- Evaluation and Model Tuning

24

Recommended Knowledge

This module will shortly introduce all core knowledge in machine learning / statistical learning at the
undergraduate level. However, it is recommended to be familiar with the basic concepts of machine
learning, such as supervised and unsupervised learning, and the basic types of models and algorithms
used in machine learning.

Intended Learning Outcomes

No | Competence ILO
1 | Understand Understand and explain the core principles behind supervised and
unsupervised techniques.
2 | Use Use ML frameworks and tools.
3 | Apply Apply ML methods to solve domain-specific problems, such as in
data analytics, computer vision, or natural language processing.

Indicative Literature

e S. Shalev-Shwartz, Shai Ben-David: Understanding Machine Learning, Cambridge University
Press, 2014. C. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

e T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining,
Inference, and Prediction, 2nd edition, Springer, 2008.

e T.M. Mitchell, Machine Learning, Mc Graw Hill India, 2017.

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Machine Learning | Program Code 100 45% 1-3
Overview

Module Achievement

25

4.1.4 Development Ecosystem

Module Name

Development Ecosystem

Module Code

2025-MAST-101

Module ECTS

5

Program Owner

2025-AST-MSc

(Advanced Software Technology)

Module Coordinator

Prof. Dr. Timofey Bryksin

Study Semester
Program Semester | Status
2025-AST-MSc 1 Mandatory
Advanced Software Technology Elective
Student Workload
Exam Preparation | 20
Independent Study | 70
Lecture and Tutorial | 35
Total Hours | 125
Module Components Number Type cp
Development Ecosystem MAST-101-A Lecture/Tutorial 5

Module Description

A programming language is only the first tool you need to develop applications. After knowing the
syntax and the execution environment come tooling and essential libraries. In the end, to develop a
non-trivial and practical application one should know a lot about the programming language
ecosystem. This course covers some software development practices in Kotlin and some must-know

libraries and tools for Kotlin.
Content:

- Gradle

- Testing

- Profiling

- DSL

- Networking in JVM

- Ktor

- Reflection

- Data Science

- Interoperability

26

- Annotations
- IntelliJ Platform SDK

- Compose

Recommended Knowledge

- Before diving into the ecosystem, it's important to have a solid understanding of the Kotlin language
itself. You can start by reading through the official Kotlin documentation and working through some
of the tutorials and examples provided there.

- Expected to have practical knowledge of everything described in Kotlin documentation
(https://kotlinlang.org/docs/) up to Annotations

Usability and Relationship to other Modules

Kotlin is a general-purpose programming language that is designed to be fully interoperable with Java.
This means that it can be used in a wide variety of contexts, including web development, Android
development, and server-side development. One of the main advantages of Kotlin is its improved
readability and expressiveness over Java. It has a more compact and expressive syntax, which makes
it easier to write and maintain code. Additionally, Kotlin has a number of features that make it more
suitable for functional programming, such as support for lambda expressions and higher-order
functions. Another advantage of Kotlin is that it is fully compatible with Java, which means that
developers can easily integrate it into existing Java projects, and use Java libraries and frameworks
with Kotlin. This also makes it easy for Java developers to start using Kotlin, as they can continue to
use the tools and libraries that they are already familiar with. For Android development, Kotlin has
become the preferred language for Android development by Google since 2019, and it is supported by
Android Studio, the official IDE for Android development. This make the transition from Java to Kotlin
very smooth.

Intended Learning Outcomes

No | Competence ILO
1 | Write Write different Kotlin applications from scratch.
2 | Use Use Kotlin for web-development, data science, IntelliJ Platform
plugins.
3 | Deploy Deploy and maintain Kotlin applications in production
environments.
4 | Understand Understand deeply how the Kotlin compiler works and how Kotlin
works with different platforms.

Indicative Literature

e Alexey Soshin: "Kotlin Cookbook", O'Reilly Media, 2018.

e Antonio Leiva: "Kotlin for Android Developers", Packt Publishing, 2017.

e Ashish Belagali and Hardik Trivedi: "Kotlin Blueprints", Packt Publishing, 2018.

e Dmitry Jemerov and Svetlana Isakova: "Kotlin in Action", Manning Publications, 2017.
e Stephen Samuel and Stefan Bocutiu: "Programming Kotlin", O'Reilly Media, 2018.

27

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Development Ecosystem | Program Code 100 45% 1-4

Module Achievement

28

4.1.5 Architectural Strategy

Module Name Architectural Strategy
Module Code 2025-MCSSE-SE-03
Module ECTS 5
Program Owner 2025-CSSE-MSc
(Computer Science & Software Engineering)
Module Coordinator Prof. Dr. Jiirgen Schénwalder
Study Semester
Program Semester | Status
2025-AST-MSc 2 Mandatory
Advanced Software Technology Elective
2025-CSSE-MSc 2 Mandatory
Computer Science & Software Engineering

Student Workload
Lecture | 35
Tutorial | 35
Independent Study | 55
Total Hours | 125
Module Components Number Type cp
Architectural Strategy MCSSE-SE-03 Lecture/Tutorial 5

Module Description

The course “Architectural Strategy” focuses on Software Architectures, the key element for
systematically developing large and complex software systems. During the course, we study how to
design, recover, analyze, and document Software Architectures and understand how the main design
decisions comprising them influence the quality attributes of the resulting systems.

Students will know in the first session which assignments will be part of the portfolio examination.

Intended Learning Outcomes

No | Competence ILO

1 | Understand Understand methods for designing large software systems.

2 | Design Design complex and large software systems using components and
connectors.

3 | Use Use UML as modeling language to represent the main concepts of
software systems.

4 | Document Document their main design decisions and motivate them in terms
of quality attributes.

29

Indicative Literature

e (. Pautasso, Software Architecture, 2020 (Visual Lecture Notes).

e Len Bass, Paul Clements, Rick Kazman: Software Architecture in Practice. Addison Wesley

2013.

e R.N. Taylor, N. Medvidovic, E.M. Dashofy, Software Architecture: Foundations, Theory, and

Practice, Wiley, January (2009).

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None
Assessment and Completion
Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Architectural Strategy Portfolio Individua | 100 45% 1-4
Assessment I
Assighm
ents,
Group
Assighm
ents

Module Achievement

30

4.1.6 Static Program Analysis

Module Name

Static Program Analysis

Module Code

2025-MAST-205

Module ECTS

5

Program Owner

2025-AST-MSc

(Advanced Software Technology)

Module Coordinator

Prof. Dr. Alexander Omelchenko

Study Semester
Program Semester | Status
2025-AST-MSc 2 Mandatory
Advanced Software Technology Elective
Student Workload
Exam Preparation | 20
Independent Study | 70
Lecture | 17.5
Tutorial | 17.5
Total Hours | 125
Module Components Number Type cp
Static Program Analysis MAST-205-A Lecture 2.5
Static Program Analysis Tutorial MAST-205-B Tutorial 2.5

Module Description

The module aims to provide students with a comprehensive understanding of the kinds of program
analysis and their applications; to familiarize students with the techniques and algorithms used for
type analysis, data- and control-flow analyses, intra- and interprocedural analyses, alias analysis,

bounded model checking; to develop students' skills in using program analysis to detect bugs, optimize
code and perform security analysis; to train students to use program analysis tools and frameworks
such as Soot, LLVM, and Frama-C; to give students an opportunity to apply their knowledge of program

analysis to solve real-world problems.

Content:

- Introduction to program analysis: Types of program analysis, applications, and challenges.

- Type analysis: Definition, kinds and algorithms.

- Monotone framework: Definition, kinds and algorithms.

- Interval analysis: Definition, kinds and algorithms.

- Path sensitive analysis: Definition, kinds and algorithms.

- Bounded model checking: Definition, kinds and algorithms.

31

- Interprocedural analysis: Definition, kinds and algorithms.
- Alias analysis: Definition, kinds and algorithms.
- Applications of program analysis: Bug detection, code optimization, and security analysis.

A single assessment type cannot sufficiently test all intended learning outcomes. The practical
assessment evaluates practical skills, whereas the written examination assesses understanding of
theoretical knowledge, core principles, and analytical reasoning.

Recommended Knowledge

It is important to have a solid understanding of the concepts and techniques of software engineering
and programming languages, as the course will cover program analysis techniques and how to use
them to improve software quality and security. Understanding compilers, formal languages or
semantics of programming languages would make parts of the course easier to grasp, but it is not a
hard pre-requisite.

Usability and Relationship to other Modules

- This module belongs to the Software Engineering Track in the MSc AST.

- The course provides a comprehensive coverage of different types of program analysis, their
applications and challenges. The course is suitable for students who want to learn about the different
types of program analysis and how to use them to improve software quality and security. The course
is also beneficial for students who want to pursue a career in software engineering, software testing
or software security.

Intended Learning Outcomes

No | Competence ILO

1 | Understand Understand the different kinds of program analysis, their
applications, and challenges.
2 | Design Design and implement program analysis algorithms for type

analysis, data- and control-flow analyses, intra- and interprocedural
analyses, alias analysis, bounded model checking.

3 | Use Use program analysis tools and frameworks such as Soot, LLVM, and
Frama-C.

4 | Understand Understand the results of program analyses, and use them to
improve software quality and security.

5 | Apply Apply program analysis techniques to solve real-world problems in

the field of software engineering.

Indicative Literature

e "Principles of Program Analysis" by Hanne Riis Nielson, Flemming Nielson, Springer, 1999.

e “Introduction to Lattices and Order” by B.A. Davey, H.A. Priestley, Cambridge University Press,
2022.

o “Introduction to Static Analysis: An Abstract Interpretation Perspective” by Xavier Rival,
Kwangkeun Yi, The MIT Press, 2020.

32

e “Value-Range Analysis of C Programs: Towards Proving the Absence of Buffer Overflow
Vulnerabilities” by Axel Simon, Springer, 2008.
o “WYSINWYX: What You See Is Not What You Execute” by Gogul Balakrishnan, University Of
Wisconsin—Madison, 2007.

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None
Assessment and Completion
Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Static Program Analysis Oral 45 50 45% All
Examination minutes theoretic
al ILOs of
the
module
Static Program Analysis | Practical 50 45% All
Tutorial Assessment practical
ILOs of
the
module

Module Achievement

33

4.1.7 Quality Engineering

Module Name

Quality Engineering

Module Code

2025-MCSSE-SE-02

Module ECTS

5

Program Owner

2025-CSSE-MSc
(Computer Science & Software Engineering)

Module Coordinator

Prof. Dr. Mauro Pezzé

Study Semester
Program Semester | Status
2025-AST-MSc 1 Mandatory
Advanced Software Technology Elective
2025-CSSE-MSc 1 Mandatory
Computer Science & Software Engineering
Student Workload
Lecture | 35
Independent Study | 90
Total Hours | 125
Module Components Number Type cp
Quality Engineering MCSSE-SE-02 Lecture 5

Module Description

Software quality is an essential part of the software development and cannot be guaranteed a-priori,

but most be verified both during and after the development. This course introduces the main testing
and analysis techniques that can be used to identify failures and verify the quality of software systems.

The course introduces the general testing and analysis principles and the basic techniques, shows how
to apply them to solve relevant quality problems, illustrates complementarities and differences among
the different techniques, and presents the organization of a coherent quality process. The course

provides the elements needed to understand principles, techniques and process that comprise the
basic background of test designer, quality manager and project manager. At the end of the course, the
students will be able to define and implement quality plans for complex software systems. The student
will have the basic knowledge of a project and a quality manager.

Students will know in the first session which assignments will be part of the portfolio examination.

Recommended Knowledge

-Programming skills in an imperative language at CS bachelor level

- Algorithms and data structure at CS bachelor level

- Basic skills in software testing: structural testing, Junit

- Basic knowledge of software engineering and IDEs at CS bachelor level

34

- Discrete math at CS bachelor level

Intended Learning Outcomes

No | Competence

ILO

1 | Manage

Manage a software quality process.

2 | Select

Select and implement a suitable set of testing and analysis activities
to certify the quality of software systems.

3 | Understand

Understand the core principles of software testing and program
analysis.

4 | Master Master the basic techniques underlying software testing and
program analysis.

5 | Choose Choose the suitable approaches to address the different testing and
analysis programs.

6 | Design Design and monitor a suitable quality process.

Indicative Literature

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None
Assessment and Completion
Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Quality Engineering Portfolio (Individu | 100 45% 1-6
Assessment al
Assignm
ents,
Group
Assignm
ents)

Module Achievement

35

4.1.8 Deep Learning

Module Name Deep Learning
Module Code 2025-MCSSE-AI-01
Module ECTS 5
Program Owner 2025-CSSE-MSc
(Computer Science & Software Engineering)
Module Coordinator Prof. Dr. Andreas Birk
Study Semester
Program Semester | Status
2025-AST-MSc 1 Mandatory
Advanced Software Technology Elective
2025-CSSE-MSc 1 Mandatory
Computer Science & Software Engineering Elective
2025-DE-MSc 1 Mandatory
Data Engineering Elective
2025-CSSE-MSc 3 Mandatory
Computer Science & Software Engineering Elective
2025-DE-MSc 3 Mandatory
Data Engineering Elective
2025-PHDS-BSc 5 Mandatory
Physics and Data Science Elective
2025-SDT-BSc 5 Mandatory
Software, Data and Technology Elective
Student Workload
Exam Preparation | 20
Independent Study | 70
Lecture | 35
Total Hours | 125
Module Components Number Type cp
Deep Learning MCSSE-AI-01 Lecture 5

Module Description

In machine learning we aim at extracting meaningful representations, patterns and regularities from

high-dimensional data. In recent years, researchers from various disciplines have developed “deep”
hierarchical models, i.e. models that consist of multiple layers of nonlinear processing. An important
property of these models is that they can “learn” by reusing and combining intermediate concepts, so

that these models can be used successfully in a variety of domains, including information retrieval,
natural language processing, and visual object detection. After a brief introduction into core

knowledge related to training, model evaluation and multilayer perceptrons, this module focuses on
the exposing students to deep learning techniques including convolutional and recurrent neural

36

networks, autoencoders, generative adversarial networks and reinforcement learning. The central aim
is hence to enable students to critically assess and apply modern methods in machine learning.

Recommended Knowledge

- This module is recommended for students that have been exposed to core knowledge in machine
learning / statistical learning on undergraduate level. Students without this background knowledge can
still join since required core knowledge is re-introduced. Preparation via auxiliary literature or online
courses will facilitate the start into the course.

- Strong knowledge and abilities in mathematics (linear algebra, calculus).

Usability and Relationship to other Modules

While the graduate level modules "Data Analytics" and "Machine Learning" provide an applied
introduction to the field and are therefore recommended for students with a focus on Software
Engineering or Cybersecurity, this module complements the undergraduate module "Machine
Learning" or can be used independently as a strong introduction to the field of Deep Learning.

Intended Learning Outcomes

No | Competence ILO
1 | Understand Understand core techniques to train neural networks.
2 | Select Select from modern neural network architectures the most

appropriate method (e.g. convolutional and recurrent neural
networks) based on given input data.

3 | Contrast Contrast different recent unsupervised learning methods including
autoencoders and generative adversarial networks.
4 | Describe Describe techniques in reinforcement learning.

Indicative Literature

e Aurélien Géron: Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow, 2nd
Edition, O’Reilly, 2019.

e Charu C. Aggarwal: Neural Networks and Deep Learning — A Textbook, Springer, 2018.

e Christopher M. Bishop: Pattern Recognition and Machine Learning, Springer, 2006.

e lan Goodfellow, Yoshua Bengio, Aaron Courville: Deep Learning, MIT Press, 2016.

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

37

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Deep Learning Written 120 100 45% 1-4
Examination Minutes

Module Achievement

38

4.1.9 Optimization Methods in Machine Learning

Module Name Optimization Methods in Machine Learning
Module Code 2025-MAST-110
Module ECTS 5
Program Owner 2025-AST-MSc
(Advanced Software Technology)
Module Coordinator Dr. Dmitry Kropotov
Study Semester
Program Semester | Status
2025-AST-MSc 2 Mandatory
Advanced Software Technology Elective

Student Workload

Lecture | 17.5

Tutorial | 17.5

Independent Study | 70
Exam Preparation | 20
Total Hours | 125

Module Components Number Type cp
Optimization Methods in Machine | MAST-110-A Lecture 2.5
Learning
Optimization Methods in Machine | MAST-110-B Tutorial 2.5
Learning — Tutorial

Module Description

Optimization methods underlie in solution of many problems in computer science. In machine learning,
one needs to solve an optimization problem during fitting of some prediction model on data, and
efficiency in solving such optimization problems directly influences practical applicability of the
correspondent machine learning approaches. This module aims to provide students with theoretical
knowledge and practical skills in understanding both classic and recent continuous optimization
methods (including optimization of non-convex functions) and important features in application of
such methods for solving machine learning and deep learning problems. The module supposes a
detailed discussion of practical aspects in implementation and usage of optimization routines. As the
result of the module students will be able to choose and customize optimization method with better

fit for their applied problems.

Content:

- Basic optimization techniques: gradient descent and Newton method, their theoretical properties

- Practical optimization: conjugate gradient, Hessian-free optimization, Quasi-Newton optimization

- Constrained optimization: KKT theorem, primal and primal-dual methods

39

- Solving various optimization problems in practice: adversarial attacks for neural networks,
Wasserstein distance minimization for GANs, precoding optimization for 5G cellular networks, etc.

- Convex analysis: convex sets and functions, conjugate functions and norms, projection and proximal
operators

- Stochastic optimization for convex functions and neural networks

A single assessment type cannot sufficiently test all intended learning outcomes. The program code
evaluates practical skills, whereas the written examination assesses understanding of theoretical
knowledge, core principles, and analytical reasoning.

Usability and Relationship to other Modules

- The ability to solve optimization problems and familiarity with optimization methods is fundamental
for almost all advanced modules in artificial intelligence and data science. For example, the module
“Reinforcement Learning” requires understanding of trust region second order optimization for TRPO
algorithm and different concepts from convex analysis for GAIL algorithm. The modules “Bayesian
Methods in Machine Learning” and “Deep Bayesian Models” actively use constrained optimization on
simplexes, set of positively defined matrices, set of orthogonal matrices, etc. The module “Deep
Learning” requires understanding of dual problems for minimizing f-divergences, Wasserstein
distances, etc. This module provides students with solid understanding of optimization which is needed
in many other modules of the MSc program and also for research purposes.

- This module belongs to the Data Science Track in the MSc AST

Recommended Knowledge

- Good knowledge of machine learning, calculus, numerical methods

- Good understanding of machine learning and deep learning methods and underlying optimization
problems, such as linear and logistic regression, support vector machines, L1 and other sparsity-
inducing norms, adversarial attacks, optimal transport, etc. Good understanding of numerical methods
of linear algebra would be a big plus.

Intended Learning Outcomes

No | Competence ILO

1 | Solve Solve analytically different constrained and unconstrained
optimization problems.
2 | Detect Detect convexity of underlying functions and sets, detect standard

classes of constrained optimizations, transform applied optimization
problems to standard classes for further application of optimization

solver.

3 | Understand Understand theoretical properties of different optimization
methods, their pros and cons.

4 | Understand Understand underlying numerical methods of linear algebra and
matrix computations better.

5 | Implement Implement basic and advanced optimization methods on their own.

40

Indicative Literature

e B. Amos, J. Kolter. OptNet: Differentiable Optimization as a Layer in Neural Networks,

arXiv:1703.00443, 2017.

e J. Nocedal, S.J. Wright. Numerical Optimization, Springer, 2006.
e Nowozin et al. -GAN: Training Generative Neural Samplers using Variational Divergence

Minimization. arXiv:1606.00709, 2016.

e S.Boyd, L. Vandenberghe. Convex Optimization, Cambridge University Press, 2004.

Entry Requirements

Prerequisites

None

Co-requisites

None

Additional Remarks

None

Assessment and Completion

Examination
Type

Module Component

Duration
or
Length

Weight
(%)

Minimu
m for
Pass

ILOs

Written
Examination

Optimization Methods in
Machine Learning

60
Minutes

50

45%

All
intended
learning
outcome
s of the
module
excludin
g topics
of
theoretic
al
assignem
ents.

Optimization Methods in
Machine Learning -
Tutorial

Program Code

50

45%

All
practical
and
remainin
g
theoretic
al
intended
learning
outcome
s of the
module.

41

Module Achievement

42

4.1.10 Machine Learning in Software Engineering

Module Name Machine Learning in Software Engineering
Module Code 2025-MAST-203
Module ECTS 5
Program Owner 2025-AST-MSc
(Advanced Software Technology)

Module Coordinator Prof. Dr. Timofey Bryksin
Study Semester
Program Semester | Status
2025-AST-MSc 2 Mandatory

Advanced Software Technology Elective
Student Workload

Exam Preparation | 20
Independent Study | 35
Lecture | 35
Project | 35

Total Hours | 125

Module Components Number Type cp
Machine Learning in Software | MAST-203-B Tutorial 2.5
Engineering - Tutorial

Machine Learning in Software | MAST-203-A Lecture 2.5
Engineering

Module Description

Machine learning is actively used in a variety of areas, software engineering in this sense is no
exception. This course offers for consideration one and a half dozen practical problems from the field
of programming and software development, as well as the scope of machine learning to solve them:
what data and methods are used for this, what difficulties arise, what is the current progress in these
tasks and what are the problems in general now relevant in the field of machine learning in SE. The
course deals with the most relevant scientific articles of recent years, and in order to receive an
assessment, students must complete a group practical project on one of the proposed topics.

Content:

- machine learning problem statement

- using machine learning for prediction and estimation
- using machine learning for code synthesis problems
- using machine learning to optimize code architecture

- using machine learning to find duplicates

43

- using natural language processing techniques
- using machine learning to analyze code

A single assessment type cannot sufficiently test all intended learning outcomes. The practical
assessment evaluates practical skills, whereas the written examination assesses understanding of
theoretical knowledge, core principles, and analytical reasoning.

Recommended Knowledge

- Fundamental concepts of machine learning such as supervised and unsupervised learning, and the
different types of models and algorithms.

- Understanding of machine learning and deep learning approaches used for natural language
processing.

- Experience in programming in Python.

Usability and Relationship to other Modules

Familiarity with basic concepts of machine learning and software engineering is fundamental for
almost all advanced modules in artificial intelligence and software engineering. This module
additionally introduces advanced concepts of machine learning applied to software engineering, such
as applying machine learning techniques to software development, testing and maintenance that are
needed in advanced Al and software engineering-oriented modules in the 2nd year of the MSc
program, as well as for research purposes. This module belongs to the Data Science Track in the MSc
AST

Intended Learning Outcomes

No | Competence ILO

1 | Know Know the areas of expedient application of the machine learning
method, including the development of software projects. Read their
own and other people's code, and debug the program. Determine
the appropriateness of applying machine learning methods for the
selected task.
2 | Know Know the main approaches and methods of machine learning,
understand their strengths and weaknesses, the limits of
applicability. Able to measure the effectiveness of the constructed

models.

3 | Develop Develop models and prototypes of applications for the selected task
in common programming languages.

4 | Formulate Formulate an algorithm for solving a problem in the form of a

sequence of actions based on machine learning methods.
Implement algorithms for solving the selected problem in suitable
programming languages and using appropriate libraries.

44

Indicative Literature

e "Applied Machine Learning for Software Engineering" by Markus Helfert and Michael Sheng,
Springer, 2020.

e "Machine Learning for Software Developers" by David C. Anastasiu, Zoran Duric and Rishi Shah,
O'Reilly Media, 2019.

e "Machine Learning for Software Engineers" by David C. Anastasiu and Zoran Duric, O'Reilly
Media, 2018.

e "Machine Learning for Software Quality" by Juergen Rilling, Springer, 2020.

e "Machine Learning in Software Engineering" by Jorg Kienzle and Wojciech Cellary, Springer,
2018.

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Machine Learning in | Practical 50 45% All
Software Engineering - | Assessment practical
Tutorial ILOs of
the
module
Machine Learning in | Written 60 50 45% All
Software Engineering Examination Minutes theoretic
al ILOs of
the
module

Module Achievement

45

4.1.11 Machine Learning Applications

Module Name Machine Learning Applications
Module Code 2025-MAST-202
Module ECTS 5
Program Owner 2025-AST-MSc
(Advanced Software Technology)
Module Coordinator Prof. Dr. Kirill Krinkin
Study Semester
Program Semester | Status
2025-AST-MSc 3 Mandatory
Advanced Software Technology Elective
Student Workload
Exam Preparation | 20
Independent Study | 70
Lecture | 35
Total Hours | 125
Module Components Number Type cp
Machine Learning Applications MAST-202-A Lecture/Tutorial 5

Module Description

This module explores advanced topics in machine learning, with a focus on practical applications and
emerging technologies. Students will study state-of-the-art approaches, such as generative Al and
recommender systems, to gain insights into their design, implementation, and deployment. Emphasis
is placed on tackling real-world challenges and critically analyzing recent advancements in ML
applications. The course aims to prepare students to apply advanced ML techniques to diverse and
complex problems across various domains.

Recommended Knowledge

Basic concepts of machine learning, such as supervised and unsupervised learning, and the different
types of models and algorithms.

Intended Learning Outcomes

No | Competence ILO
1 | Choose Choose appropriate algorithms for building models.
2 | Design Design and implement machine learning models for advanced
applications.
3 | Analyze Analyze and evaluate the performance of complex ML systems in
real-world contexts.

46

4 | Assess Assess recent research and developments in advanced ML topics

critically.

5 | Collaborate Collaborate effectively in teams to tackle complex ML challenges.

Indicative Literature

e "Programming Collective Intelligence" by Toby Segaran, O'Reilly Media, 2007.
e "Recommender Systems" by Jannach, Dietmar and Zanker, Markus and Felfernig, Alexander

and Friedrich, Gerhard and Loos, Peter. Springer, 2017.

e Selected recent papers from conferences such as NeurlIPS, ICML, ICLR and ACM RecSys.

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None
Assessment and Completion
Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Machine Learning | Program Code 100 45% 1-5
Applications

Module Achievement

47

4.1.12 Bayesian Methods in Machine Learning

Module Name

Bayesian Methods in Machine Learning

Module Code

2025-MAST-204

Module ECTS

5

Program Owner

2025-AST-MSc
(Advanced Software Technology)

Module Coordinator

Prof. Dr. Dmitry Vetrov

Study Semester
Program Semester | Status
2025-AST-MSc 1 Mandatory
Advanced Software Technology Elective
Student Workload
Exam Preparation | 20
Independent Study | 70
Lecture | 17.5
Tutorial | 17.5
Total Hours | 125
Module Components Number Type cp
Bayesian Methods in Machine | MAST-204-B Tutorial 2.5
Learning - Tutorial
Bayesian Methods in Machine | MAST-204-A Lecture 2.5
Learning

Module Description

The module focuses on the application of Bayesian
with theoretical knowledge and practical skills to

methods to machine learning, providing students
incorporate probabilistic modeling and Bayesian

techniques in their machine learning projects. The course will cover key Bayesian concepts, Bayesian
inference methods, the use of Bayesian approaches in various machine learning algorithms, and the
advantages of Bayesian techniques in handling uncertainty and modeling complex data.

Content

- Introduction to Bayesian methods: Bayesian Inference, conjugate priors, exponential family of

distributions, Bayesian model selection.

- Bayesian linear regression and classification: automatic choosing of relevant features.

- EM-algorithm for training models with latent variables

- Approximate Bayesian methods: Variational Inference, Markov Chain Monte Carlo (MCMC) methods,

Gibbs sampling, and Metropolis Hastings algorithm.

- Bayesian approaches in various machine learning algorithms: Bayesian clustering, Bayesian topic

modelling and Bayesian mixture models.

48

- Bayesian non-parametric methods: Gaussian processes, Dirichlet processes, and their applications in
machine learning.

A single assessment type cannot sufficiently test all intended learning outcomes. The program code
evaluates practical skills, whereas the written examination assesses understanding of theoretical
knowledge, core principles, and analytical reasoning.

Recommended Knowledge

- Good understanding of the fundamental concepts of calculus, statistics, machine learning.

- Basic knowledge from optimization, machine learning, statistics.

Usability and Relationship to other Modules

- Familiarity with basic probability and statistics, as well as machine learning concepts, is fundamental
for almost all advanced modules in artificial intelligence and data science. This module additionally
introduces advanced concepts of Bayesian methods and their application in machine learning, which
are needed in advanced Al and data science-oriented modules in the 2nd year of the MSc program and
also for research purposes.

- This module belongs to the Data Science Track in the MSc AST

Intended Learning Outcomes

No | Competence ILO

1 | Apply Apply main tools for building and training Bayesian models for
classical ML problems.

2 | Construct Construct latent variable models and select the appropriate
algorithms for working with them.

3 | Analyze Analyze pros and cons of approximate Bayesian inference
algorithms.

4 | Understand Understand the motivation of Bayesian approach to ML and its
distinctions from classical ML algorithms.

Indicative Literature

e Christopher M. Bishop: Pattern Recognition and Machine Learning. Springer, 2006.

e lan Goodfellow, Yoshua Bengio, Aaron Courville: Deep Learning. MIT Press, 2016.

e Kevin P. Murphy, “Probabilistic Machine Learning: Advanced Topics”, MIT Press, 2023.
e Murphy, K. P. Machine Learning: A Probabilistic Perspective. MIT Press, 2012.

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

49

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Bayesian Methods in | Program Code 50 45% All
Machine Learning - practical
Tutorial ILOs of
the
module
Bayesian Methods in | Written 60 50 45% All
Machine Learning Examination Minutes theoretic
al ILOs of
the
module

Module Achievement

50

4.1.13 Deep Bayesian Models

Module Name Deep Bayesian Models
Module Code 2025-MAST-109
Module ECTS 5
Program Owner 2025-AST-MSc
(Advanced Software Technology)
Module Coordinator Prof. Dr. Dmitry Vetrov
Study Semester
Program Semester | Status
2025-AST-MSc 2 Mandatory
Advanced Software Technology Elective
Student Workload
Lecture | 17.5
Tutorial | 17.5
Independent Study | 70
Exam Preparation | 20
Total Hours | 125

Module Components Number Type cp
Deep Bayesian Models MAST-109-A Lecture 2.5
Deep Bayesian Models - Tutorial MAST-109-B Tutorial 2.5

Module Description

This course is devoted to Bayesian reasoning in application to deep learning models. Attendees would
learn how to use probabilistic modeling to construct neural generative and discriminative models, how
to model the uncertainty about the weights of neural networks and how to design extensions of
existing deep models using their Bayesian reformulation. Selected open problems in the field of deep
learning would also be discussed. The practical assignments will cover implementation of several
modern Bayesian deep learning models. The learning objective of the course is to give students basic
and advanced tools for inference and learning in complex probabilistic models involving deep neural
networks, such as diffusion models and Bayesian neural networks.

Content:

- Scalable Bayesian Inference

- Sparsification of deep neural networks

- Variational Autoencoder (VAE) for generative modelling
- Diffusion models for generative modelling

- Generative Flow Networks

51

A single assessment type cannot sufficiently test all intended learning outcomes. The program code
evaluates practical skills, whereas the written examination assesses understanding of theoretical
knowledge, core principles, and analytical reasoning.

Recommended Knowledge

- Basic knowledge from optimization, deep learning, statistics.

- Good understanding of the fundamental concepts of deep learning and Bayesian inference.

Usability and Relationship to other Modules

- Familiarity with basic concepts of machine learning, probability, and statistics is fundamental for
almost all advanced modules in artificial intelligence and data science. This module additionally
introduces advanced concepts of deep learning, such as advanced architectures, optimization
techniques, and generative models, that are needed in advanced Al and data science-oriented modules
of the MSc program, as well as for research purposes.

- This module belongs to the Data Science Track in the MSc AST

Intended Learning Outcomes

No | Competence ILO

1 | Know Knowledge about different approximate inference and learning
techniques for probabilistic models.

2 | Apply Hands-on experience with modern probabilistic modifications of
deep learning models.

3 | Know Knowledge about the necessary building blocks that allow to
construct new probabilistic models, suitable for the desired
problems.

Indicative Literature

e D. Kingma, M. Welling. Auto-Encoding Variational Bayes. arXiv:1312.6114, 2013.

D. Molchanov et al. Variational Dropout Sparsifies Deep Neural Networks. ICML, 2017.

E. Bengio et al. Flow Network based Generative Models for Non-Iterative Diverse Candidate
Generation. NeurlPS, 2021.

J. Ho et al. Denoising Diffusion Probabilistic Models. arXiv:2006.11239, 2020.

Kevin P. Murphy, “Probabilistic Machine Learning: Advanced Topics”, MIT Press, 2023.

Entry Requirements

Prerequisites 2025-MCSSE-AI-01
Deep Learning

2025-MAST-204
Bayesian Methods in Machine Learning

52

Co-requisites

None

Additional Remarks None
Assessment and Completion
Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Deep Bayesian Models Written 60 50 45% All
Examination Minutes theoretic
al ILOs of
the
module
Deep Bayesian Models - | Program Code 50 45% All
Tutorial practical
ILOs of
the
module

Module Achievement

53

4.1.14 Data Analytics

Module Name Data Analytics
Module Code 2025-MDE-C0O-02
Module ECTS 5
Program Owner 2025-DE-MSc
(Data Engineering)
Module Coordinator Prof. Dr. Adalbert F.X. Wilhelm
Study Semester
Program Semester | Status
2025-AST-MSc 1 Mandatory
Advanced Software Technology Elective
2025-CSSE-MSc 1 Mandatory
Computer Science & Software Engineering Elective
2025-DE-MSc 1 Mandatory
Data Engineering
2025-DSSB-MSc 1 Mandatory
Data Science for Society and Business Elective
2025-MBA-120-MA 1 Mandatory
MBA 120 Elective
2025-MBA-60-MA 1 Mandatory
MBA 60 Elective
2025-MDDA-BSc 1 Mandatory
Management, Decisions and Data Analytics Elective
Student Workload
Independent Study | 90
Lecture | 17.5
Tutorial | 17.5
Total Hours | 125
Module Components Number Type cp
Data Analytics MDE-C0O-02 Lecture 5

Module Description

This module introduces concepts and methods of data analytics. The objective of the module is to
present methods for gaining insight from data and drawing conclusions for analytical reasoning and
decision-making. The module comprises a broad spectrum of methods for modelling and
understanding complex datasets. Comprising both descriptive and predictive analytics, the standard

portfolio of supervised and unsupervised learning techniques is introduced. Automatic analysis
components, such as data transformation, aggregation, classification, clustering, and outlier detection,
will be treated as an integral part of the analytics process.

54

As a central part of this module, students are introduced to the major concepts of statistical learning
such as cross-validation, feature selection, and model evaluation. The course takes an applied
approach and combines the theoretical foundation of data analytics with practical exposure to the
data analysis process.

Recommended Knowledge

- Read the Syllabus.

- Take the free online course: Introduction to Data Science at https://cognitiveclass.ai/courses/data-
science-101/

Usability and Relationship to other Modules

In this module students will learn concepts and various techniques for data analysis. They will be
rigorously applied in MDE-CS-03 as well as in the applied projects MDE-DIS-02 and MDE-DIS-03, and
typically also in the master thesis.

Intended Learning Outcomes

No | Competence ILO

1 | Explain Explain advanced data analytics techniques in theory and
application.

2 | Apply Apply data analytics methods to real-life problems using appropriate
tools.

3 | Evaluate Evaluate and compare different data analytics algorithms and
approaches.

4 | Apply Apply statistical concepts to evaluate data analytics results.

Indicative Literature

e A Telea, Data Visualization: Principles and Practice, Wellesley, Mass.: AK Peters, 1st edition,
2008.(DV).

e G. James, D.Witten, T. Hastie, Rob Tibshirani: Introduction to Statistical Learning with R by
Springer, 2013 (ISLR).

e M. Ward, G. Grinstein, D. Keim, Interactive Data Visualization: Foundations, Techniques, and
Applications. AK Peters, 1st edition, 2010. (IDV)

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

55

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Data Analytics Project Report | 20 Pages | 100 45% 1-4

Module Achievement

56

4.1.15 Reinforcement Learning

Module Name Reinforcement Learning
Module Code 2025-MAST-212
Module ECTS 5
Program Owner 2025-AST-MSc
(Advanced Software Technology)
Module Coordinator Dr. Dmitry Kropotov
Study Semester
Program Semester | Status
2025-AST-MSc 3 Mandatory
Advanced Software Technology Elective
Student Workload
Lecture | 17.5
Tutorial | 17.5
Independent Study | 70
Exam Preparation | 20
Total Hours | 125

Module Components Number Type cp
Reinforcement Learning MAST-212-A Lecture 2.5
Reinforcement Learning- Tutorial MAST-212-B Tutorial 2.5

Module Description

Unlike classic machine learning, in reinforcement learning training algorithm doesn’t have a dataset as
an input. Instead, trial and error method is used: an agent should collect data by itself during
interaction with outer environment and basing on this data simultaneously maximize its obtained
response — reward. The module is focused on learning state-of-the-art reinforcement learning
algorithms for different applied problems of discrete and continuous control based on combining
classic theory with deep learning.

Content:

- Introduction to RL, Bellman equations

- Tabular RL algorithms: Cross Entropy method, Value/Policy Iteration, Q learning
- Value-based deep RL algorithms: Deep Q Network and its modifications

- Policy gradient deep RL algorithms: A2C, TRPO, PPO, DDPG, SAC

- Intrinsic motivation for environment exploration

- Learning policies from experts, Imitation learning

57

- Model-based RL algorithms for discrete environments: Monte Carlo Tree Search, algorithms
AlphaZero and MuZero.

- Model-based RL algorithms for continuous environments: algorithms iLQR, Dreamer.

- Applications of RL algorithms: playing games, robot control, finding new computational algorithms,
protein structure prediction, etc.

A single assessment type cannot sufficiently test all intended learning outcomes. The program code
evaluates practical skills, whereas the written examination assesses understanding of theoretical
knowledge, core principles, and analytical reasoning.

Usability and Relationship to other Modules

- This module is devoted to solving the most challenging problems of modern artificial intelligence. The
underlying algorithms and theoretical concepts in this module are heavily based on outcomes from

Y s

other modules of the MSc program like “Deep Learning”, “Optimization in Machine Learning”, etc.

- This module belongs to the Data Science Track in the MSc AST

Recommended Knowledge

- Good knowledge of machine learning, deep learning and optimization, good skills in learning deep
neural networks.

- Students are expected to have good skills in learning deep neural networks and a good understanding
of machine learning and deep learning technologies. Good understanding of advanced optimization
methods would be a big plus.

Intended Learning Outcomes

No | Competence ILO

1 | Understand Understand theoretical foundations of reinforcement learning
algorithms and differences between various RL approaches.

2 | Implement Implement different RL algorithms for various environments and
experiment with them.

3 | Understand Understand a general concept of simultaneous training of world
model and control algorithm.

4 | Understand Understand how to solve most challenging problems of modern
artificial intelligence using RL algorithms.

Indicative Literature

e David Silver, et al. Mastering the game of go without human knowledge. Nature 550.7676
(2017): 354.

e Fawzi et al. Discovering faster matrix multiplication algorithms with reinforcement learning.
Nature 610, 47-53 (2022).

e R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction, MIT Press, 2018.

e Y. Li. Deep reinforcement learning: An overview. arXiv preprint arXiv:1701.07274. 2017.

58

Entry Requirements

Prerequisites

2025-MCSSE-AI-01
Deep Learning

Co-requisites None
Additional Remarks None
Assessment and Completion
Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Reinforcement Learning Written 60 50 45% All
Examination Minutes theoretic
al ILOs of
the
module
Reinforcement Learning- | Program Code 50 45% All
Tutorial practical
ILOs of
the
module

Module Achievement

59

4.1.16 Large Scale Deep Learning Models

Module Name

Large Scale Deep Learning Models

Module Code

2025-MAST-213

Module ECTS

5

Program Owner

2025-AST-MSc
(Advanced Software Technology)

Module Coordinator

Dr. Dmitry Kropotov

Study Semester
Program Semester | Status
2025-AST-MSc 3 Mandatory
Advanced Software Technology Elective
Student Workload
Lecture | 17.5
Tutorial | 17.5
Independent Study | 70
Exam Preparation | 20
Total Hours | 125
Module Components Number Type cp
Large Scale Deep Learning Models MAST-213-A Lecture 2.5
Large Scale Deep Learning Models- | MAST-213-B Tutorial 2.5
Tutorial

Module Description

With the development of deep learning, the size of models has grown to billions of parameters, and
training data can be measured in terabytes. This led to the fact that models began to receive new
properties, for example, zero-shot learning for text models. This module is aimed to show how large-
scale models are trained without using labeled datasets in many domains: vision, text, audio. We also
will talk about the model's architectural designs that made the training possible, what hidden abilities
larger models obtain after the training and how to adapt such models to downstream tasks without

additional fine-tuning.

Content:

- Introduction to the course, classical pretext tasks for self-supervised learning.

- What to do with a pretrained model? Probing, Linear classifier, Fine-tuning.

- Contrastive learning for images. Mutual information, SimCLR, MoCo, BYOL, SimSiam, SwAV.

- Masked Image Modeling. DINO, BEiT, MAE, MaskFeat. Different approaches to improving contrastive

learning.

- Overview of Transformer-based language models. GPT, BERT, XLNet, RoBERTa, ALBERT, MASS, BART,

ELECTRA.

60

- Model pre-training for the source code domain. code2vec, code2seq, CodeBERT, GraphCodeBERT,
CodeT5, Codex.

- Diffusion models for NLP. Theory introduction, Multinomial Diffusion, D3PM, Diffusion-LM, DiffuSeq.

- Self-supervised learning for audio. Introduction to audio processing. CPC, Wav2Vec 2.0, HUBERT,
Multi-format contrastive learning, BYOL-A.

- Self-supervised learning for graphs. Intro to representation learning on graphs.

A single assessment type cannot sufficiently test all intended learning outcomes. The program code
evaluates practical skills, whereas the written examination assesses understanding of theoretical
knowledge, core principles, and analytical reasoning.

Usability and Relationship to other Modules

- This module covers the most recent approaches for training deep neural network models. This
module is based on outcomes from other MSc modules like “Deep Learning”.

- This module belongs to the Data Science Track in the MSc AST

Intended Learning Outcomes

No | Competence ILO
1 | Learn Learn about the history of the increasing size deep learning models.
2 | Deepen Deepen their understanding of internal structure of large-scale
models.
3 | Learn Learn how to use pre-trained large-scale models to solve
downstream tasks.
4 | Train Train their own large-scale model.

Indicative Literature

e Scientific papers and blogs on models and algorithms from content description.

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Large Scale Deep Learning | Written 60 50 45% All
Models Examination Minutes theoretic
al ILOs of

61

the
module

Large Scale Deep Learning
Models- Tutorial

Program Code

50

45%

All
practical
ILOs of
the
module

Module Achievement

62

4.1.17 Industrial Machine Learning on Hadoop and Spark

Module Name Industrial Machine Learning on Hadoop and
Spark
Module Code 2025-MAST-113
Module ECTS 5
Program Owner 2025-AST-MSc
(Advanced Software Technology)
Module Coordinator Prof. Dr. Andreas Birk
Study Semester
Program Semester | Status
2025-AST-MSc 1 Mandatory
Advanced Software Technology Elective
2025-AST-MSc 3 Mandatory
Advanced Software Technology Elective

Student Workload

Lecture | 17.5

Tutorial | 17.5

Independent Study | 90
Total Hours | 125

Module Components Number Type cp
Hadoop and Spark Theory MAST-113-A Lecture 2.5
Industrial Machine Learning MAST-113-B Tutorial 2.5

Module Description

This course provides an in-depth exploration of industrial machine learning applications using Hadoop
and Spark. Topics include:

- Hadoop: HDFS, MapReduce, YARN

- Spark: DataFrames, feature engineering, ML pipelines, and real-time streaming analytics

Emphasis is placed on practical, hands-on lab sessions and a final project designed to solve real-world
industrial problems.

Intended Learning Outcomes

No | Competence ILO
1 | Explain Explain the architecture and functionality of Hadoop HDFS and its
role in big data processing.
2 | Gain Gain the ability to implement MapReduce and YARN-based
workflows to solve practical problems.

63

3 | Gain Gain the ability to utilize Spark DataFrames and ML libraries to
analyze and process large datasets for collaborative filtering,
image/NLP processing.

4 | Evaluate Evaluate different distributed machine learning models and their
industrial applications.
5 | Design Design and implement scalable machine learning pipelines using

Hadoop and Spark.
6 | Communicate | Communicate technical concepts effectively in both academic and
professional settings.

Indicative Literature

e Damiji, J.S., et al. Learning Spark: Lightning-Fast Data Analytics. O'Reilly Media; 2nd edition,
2020.
e White, T. Hadoop: The Definitive Guide. O'Reilly Media, 2015.

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Hadoop and Spark Theory | Program Code | Continuo @ 100 45% 1-6
us
assessm
ent
througho
ut the
semester

Industrial Machine
Learning

Module Achievement

64

4.1.18 Big Data Software Engineering

Module Name

Big Data Software Engineering

Module Code

2025-MAST-103

Module ECTS

5

Program Owner

2025-AST-MSc
(Advanced Software Technology)

Module Coordinator

Prof. Dr. Timofey Bryksin

Study Semester
Program Semester | Status
2025-AST-MSc 2 Mandatory
Advanced Software Technology Elective
Student Workload
Exam Preparation | 20
Independent Study | 52.5
Lecture | 17.5
Tutorial | 35
Total Hours | 125
Module Components Number Type cp
Big Data Software Engineering MAST-103-A Lecture/Tutorial 5

Module Description

The module aims to provide students with the principles of building a scalable distributed software
system for storing and processing big amounts of data. The course will look at the production solutions
where such principles are implemented and will try to write our own distributed key-value storage.

Content:

- Data partitioning/sharding

- Data replication

- Distributed data processing

- Consistency in distributed systems

Assignments assume writing code, tests, configuration files, doing peer code reviews, deploying code
in a cloud environment and running benchmarks.

Recommended Knowledge

- Basic knowledge Kotlin or Java

- Before taking the course, it's important to have a solid understanding of the concepts and techniques
of software engineering and data science, as the course will cover big data technologies and how to

65

use them for data analysis and modeling. Minimal knowledge of Docker, PostgreSQL and basics of
working with relational databases will be a big plus.

Usability and Relationship to other Modules

The module provides a comprehensive coverage of the tools and technologies used for storing,
managing, and processing big data. It also covers the important topic of data quality, governance and
security. The course is suitable for students who want to learn about the challenges and opportunities
of big data and how to use the technologies to process and analyze big data. The course is also
beneficial for students who want to pursue a career in data science, software engineering, or big data
analytics.

Intended Learning Outcomes

No | Competence ILO
1 | Understand Understand the general principles and challenges of building a
distributed data storage system.
2 | Implement Implement data partitioning, replication and consensus algorithms
in their own systems.
3 | Use Use data partitioning, replication and consensus features of the
existing database systems.

Indicative Literature

e "Big Data Analytics with R and Hadoop" by Vignesh Prajapati, Packt Publishing, 2016.

e "Big Data: A Revolution That Will Transform How We Live, Work, and Think" by Viktor Mayer-
Schonberger and Kenneth Cukier, Houghton Mifflin Harcourt, 2013.

o "Big Data: Understanding How Data Powers Big Business" by Bernard Marr, John Wiley & Sons,
2015.

e "Data Management for Researchers: Organize, Maintain and Share Your Data for Research
Success" by Kristin Briney, CreateSpace Independent Publishing Platform, 2017.

e "Real-Time Big Data Analytics: Emerging Architecture" by Tejaswini Mandar Jog, Apress, 2016.

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Big Data Software | Program Code 100 45% 1-3
Engineering

66

Module Achievement

67

4.1.19 Cryptography

Module Name Cryptography
Module Code 2025-MCSSE-CYB-01
Module ECTS 5
Program Owner 2025-CSSE-MSc
(Computer Science & Software Engineering)
Module Coordinator Prof. Dr. Jiirgen Schénwalder
Study Semester
Program Semester | Status
2025-AST-MSc 1 Mandatory
Advanced Software Technology Elective
2025-CSSE-MSc 1 Mandatory
Computer Science & Software Engineering Elective
Student Workload
Lecture | 35
Independent Study | 70
Exam Preparation | 20
Total Hours | 125
Module Components Number Type cp
Cryptography MCSSE-CYB-01 Lecture 5

Module Description

Information security requires techniques to protect information and to secure communication.
Cryptography studies the design of cryptographic algorithms that can ensure confidentiality, integrity,
and authenticity of data and messages exchanged in a secure communication protocol or when data
is stored. This module focuses on the mathematical and algorithmic foundations of cryptography, and
it covers the application of basic primitives to solve common information security challenges. Students
familiar with the foundations of cryptographic algorithms will be able to judge the applicability and
limitations of different cryptographic algorithms.

Recommended Knowledge

Students are expected to have a solid mathematical foundation. Students should review basic concepts
of number theory, probability theory, and complexity theory in preparation for this module.

Usability and Relationship to other Modules

- The module serves as the foundational module in the cyber security specialization in CSSE. Other
modaules related to cyber security build on this module.

- This module belongs to the Software Engineering Track in the MSc AST

68

Intended Learning Outcomes

No | Competence ILO

1 | Understand Understand the mathematical problems on which cryptographic
algorithms are built.

2 | Describe Describe pseudo random number generators and pseudo random
functions.

3 | Evaluate Evaluate the strengths, weaknesses, and the applicability of
cryptographic algorithms.

4 | Select Select from a set of symmetric block cipher, message integrity, and
authenticated encryption algorithms.

5 | Contrast Contrast different asymmetric ciphers (finite field based, elliptic
curve based, lattice based, hash based).

6 | Explain Explain the notion of quantum resistant cryptographic algorithms.

7 | Analyze Analyze the properties of cryptographic protocols such as key
exchange mechanisms.

8 | Apply Apply techniques to analyze cryptographic protocols and their
implementations.

9 | Explain Explain homomorphic encryption schemes and differential privacy.

Indicative Literature

Entry Requirements

Bruce Schneier: Applied Cryptography, 20th Anniversary Edition, Wiley, 2015.
Dan Boneh, Victor Shoup: A Graduate Course in Applied Cryptography, version 0.5, online,

2020.

Simon Singh: The Code Book: Science of Secrecy from Ancient Egypt to Quantum
Cryptography, Anchor Books, 2000.
Wm. Arthur Conklin, Gregory White: Principles of Computer Security, 5th Edition, McGraw-

Hill, 2018.

Prerequisites None

Co-requisites None

Additional Remarks None

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs

Type or (%) m for
Length Pass

Cryptography Written 120 100 45% 1-9

Examination Minutes

69

Module Achievement

70

4.1.20 System Security

Module Name System Security
Module Code 2025-MCSSE-CYB-02
Module ECTS 5
Program Owner 2025-CSSE-MSc
(Computer Science & Software Engineering)
Module Coordinator Prof. Dr. Jiirgen Schénwalder
Study Semester
Program Semester | Status
2025-AST-MSc 2 Mandatory
Advanced Software Technology Elective
2025-CSSE-MSc 2 Mandatory
Computer Science & Software Engineering Elective
Student Workload
Lecture | 35
Independent Study | 70
Exam Preparation | 20
Total Hours | 125
Module Components Number Type cp
System Security MCSSE-CYB-02 Lecture 5

Module Description

This module focuses on system level security aspects of computing systems. The module starts with
investigating attacks on the microarchitecture of computing systems, such as attacks to gain
information from side channels targeting caches. It then introduces trusted execution environments
that use hardware isolation mechanisms to provide protected storage for keys and to bootstrap the
integrity of bootloaders and the loaded operating systems. Students learn about the different levels of
isolation that can be achieved using various types of hypervisors or sandboxing mechanisms.
Techniques that can be used to protect a system against misbehaving code and malware are
introduced. Students will gain knowledge how protected data storage components can be provided at
the system level and how systems can offer support for collections of (distributed) authentication
mechanisms. Finally, the module will discusses how authorization mechanisms are realized in the
different system software components and how they can be used to define effective security policies.

Recommended Knowledge

Students are expected to be familiar with program execution at the system and machine level.
Students should have a good understanding of computer architecture and operating systems at the
level of typical undergraduate modules covering these topics. Students who have not taken an
undergraduate course on computer architecture or operating systems yet may consider taking a

71

remedial course or an online course to obtain a fundamental understanding how computer systems
function.

Usability and Relationship to other Modules

- The module serves as a mandatory elective module in the cyber security specialization. Parts of the
module require an understanding of cryptographic algorithms.

- This module belongs to the Software Engineering Track in the MSc AST

Intended Learning Outcomes

No | Competence ILO

1 | Describe Describe microarchitectural attacks and computer components and
suitable counter measures.

2 | lllustrate Illustrate trusted execution environments and how they can be used
to bootstrap security.

3 | Compare Compare the isolation achieved by hypervisors and operating
system mechanisms.

4 | Assess Assess application layer isolation and sandboxing mechanisms.

5 | Explain Explain how systems can identify misbehaving code and protect
themselves against malware.

6 | Outline Outline how protected data storage can be implemented.

7 | Recommend Recommend authentication methods suitable for different kinds of
applications.

8 | Compose Compose authorization mechanisms to define effective security
policies.

Indicative Literature

e Swarup Bhunia: Hardware Security: A Hands-on Learning Approach, Morgan Kaufmann, 2018.
e William Stallings, Lawrie Brown: Computer Security: Principles and Practice, 4th edition,
Pearson, 2018.

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
System Security Written 120 100 45% 1-8
Examination Minutes

72

Module Achievement

73

4.1.21 Network Security

Module Name Network Security
Module Code 2025-MCSSE-CYB-03
Module ECTS 5
Program Owner 2025-CSSE-MSc
(Computer Science & Software Engineering)
Module Coordinator Prof. Dr. Jiirgen Schénwalder
Study Semester
Program Semester | Status
2025-AST-MSc 3 Mandatory
Advanced Software Technology Elective
2025-CSSE-MSc 3 Mandatory
Computer Science & Software Engineering Elective
Student Workload
Lecture | 35
Independent Study | 70
Exam Preparation | 20
Total Hours | 125
Module Components Number Type cp
Network Security MCSSE-CYB-03 Lecture 5

Module Description

Computer networks such as the Internet connect millions of computing systems, enable a fast
exchange of information, and provide the technological basis on which large parts of the modern
online economy are built. Computer networks, however, also expose an infrastructure that can be
used by criminals or nation states to attack computing systems, to control the flow of messages, or to
distribute malicious programs to potentially large numbers of targeted systems. This module educates
students about how computer networks can be used to obtain information about remote systems, to
manipulate the flow of data traffic, to disrupt access to remote services, or to control malicious
software using botnets and distributed command and control channels. The module also covers
technologies that help to protect the integrity of computer networks and that provide generic security
services that can be used by applications requiring secure communication.

Recommended Knowledge

Students are expected to have a general understanding of computer networks, as provided by typical
undergraduate modules on computer networks. Students who have not taken an undergraduate
course on computer networks yet may consider taking a remedial course or an online course to obtain
a fundamental understanding how computer networks function.

74

Usability and Relationship to other Modules

- The module serves as a mandatory elective module in the cyber security specialization. It builds on
the cryptography module, which provides the necessary knowledge of cryptographic primitives that
are used to protect data exchanged over computer networks and to authenticate communicating
peers.

- This module belongs to the Software Engineering Track in the MSc AST

Intended Learning Outcomes

No | Competence ILO

1 | Describe Describe techniques to obtain information about networked
computing systems.

2 | Contrast Contrast mechanisms in the different network protocol layers for
traffic manipulation and redirection.

3 | Explain Explain how distributed denial of service attacks are executed and
how botnets are constructed.

4 | Evaluate Evaluate security mechanisms such as firewalls and anomaly /
intrusion detection systems.

5 | Analyze Analyze generic security protocols such as IPsec, TLS, SSH and how
they have evolved.

6 | Compare Compare protocols aiming to secure the network infrastructure
(name resolution, routing).

7 | Evaluate Evaluate the security properties of modern software-defined
network architectures.

8 | Design Design scalable solutions for protecting communication in
distributed applications.

Indicative Literature

e Chris McNab, Network Security Assessment, O'Reilly, 2017.

e James Forshaw: Attacking Network Protocols, A Hacker's Guide to Capture, Analysis, and
Exploitation, no starch press, 2017.

o William Stallings: Cryptography and Network Security: Principles and Practice, 7th edition,
Pearsons, 2018.

Entry Requirements

Prerequisites 2025-MCSSE-CYB-01
Cryptography

Co-requisites None

Additional Remarks None

75

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Network Security Written 120 100 45% 1-8
Examination Minutes

Module Achievement

76

4.1.22 IDE Development

Module Name

IDE Development

Module Code

2025-MAST-207

Module ECTS

5

Program Owner

2025-AST-MSc

(Advanced Software Technology)

Module Coordinator

Prof. Dr. Timofey Bryksin

Study Semester
Program Semester | Status
2025-AST-MSc 1 Mandatory
Advanced Software Technology Elective
Student Workload
Exam Preparation | 20
Independent Study | 70
Lecture | 17.5
Tutorial | 17.5
Total Hours | 125
Module Components Number Type cp
IDE Development MAST-207-A Lecture and Seminar | 5

Module Description

The module is designed to introduce students to a modern approach to creating integrated
development tools. The course covers the main IDE modules: lexer, parser, code analyzer, local and
global caches, code navigation, code modification and refactorings. In addition to the theoretical
review, students will gradually develop their own IDE during the course. The course was created and

implemented with the support of JetBrains. It is an elective module .

Content:

- Development tools. An introduction to the history and architecture of the IDE

- Data structures for working with text. Text editor and document markup

- Virtual file system, the concepts of the PSI model and the design model

- Introduction to the theory of formal languages
- Lexical analysis

- Parsing, abstract syntax trees

- Semantic analysis, symbol tables and link resolution.

- Introduction to type systems and type inference.

77

- Introduction to static analysis.

- Abstract interpretation, control flow analysis and data flow analysis

- Interprocedural analysis and call graph

- Help with typing and code completion. Search and navigation through the code.

- Modification of the abstract syntax tree. Code generation based on the abstract syntax tree. Auto-
formatting. Automatic refactoring.

- Debugger and debugging symbols, expression evaluation during debugging.

- Instrumentation, profiling and tracing

Recommended Knowledge

The students should have a strong foundation in programming concepts and practices.

Usability and Relationship to other Modules

- The course provides a comprehensive coverage of the tools and technologies used for developing
integrated development environments (IDEs). This can include topics such as IDE architecture, plugin
development, debugging, code refactoring, version control integration and software testing. The
course is suitable for students who want to learn about the challenges and opportunities of IDE
development and how to use the technologies to develop IDEs. The course is also beneficial for
students who want to pursue a career in software development, software engineering or software
testing.

- This module belongs to the Software Engineering Track in the MSc AST

Intended Learning Outcomes

No | Competence ILO

1 | Demonstrate Demonstrate a thorough understanding of the algorithms, data
structures, and methods underlying the operation of modern IDEs
and static analysis tools.
2 | Conduct Conduct research in the field of IDE development by identifying,
analyzing, and developing new specific algorithms necessary to
solve problems that arise during the development process.
3 | Apply Apply practical skills to address applied problems that emerge
during the development of an IDE, such as designing user interfaces,
optimizing performance, and implementing advanced features.

4 | Evaluate Evaluate and compare various IDEs and static analysis tools,
considering factors such as usability, efficiency, and extensibility.
5 | Collaborate Collaborate effectively with a team to design, implement, and refine

an IDE or a static analysis tool, leveraging version control systems,
project management tools, and communication skills.

78

Indicative Literature

e "Clean Code: A Handbook of Agile Software Craftsmanship" by Robert C. Martin.

o "Refactoring: Improving the Design of Existing Code" by Martin Fowler.

e "The Pragmatic Programmer: From Journeyman to Master" by Andrew Hunt and David
Thomas.

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass

IDE Development Program Code 100 45% All
theoretic
al ILOs of
the
module

Module Achievement

79

4.1.23 Advanced Functional Programming

Module Name Advanced Functional Programming
Module Code 2025-MAST-104
Module ECTS 5
Program Owner 2025-AST-MSc
(Advanced Software Technology)
Module Coordinator Prof. Dr. Anton Podkopaev
Study Semester
Program Semester | Status
2025-AST-MSc 1 Mandatory
Advanced Software Technology Elective
Student Workload
Exam Preparation | 20
Independent Study | 70
Lecture | 17.5
Tutorial | 17.5
Total Hours | 125

Module Components Number Type cp
Advanced Functional Programming - | MAST-104-B Tutorial 2.5
Tutorial

Advanced Functional Programming MAST-104-A Lecture 2.5

Module Description

The module aims to provide students with a thorough understanding advanced concepts and design
patterns in functional programming, interacting with the external world using functional programming,
being able to profile and debug functional programs, understanding and implementing persistent data
structures in functional programming, understanding the principles of functional programming and be
able to use them to solve complex problems.

Content:

- Advanced functional programming concepts and design patterns

- Interacting with the external world in functional programming

- Profiling and debugging functional programs

- Persistent data structures and their implementation in functional programming
- Type-level programming and meta-programming in functional programming

- Hands-on experience with the Haskell programming language

80

A single assessment type cannot sufficiently test all intended learning outcomes. The program code
evaluates practical skills, whereas the written examination assesses understanding of theoretical
knowledge, core principles, and analytical reasoning.

Recommended Knowledge

The basics of functional programming, including higher-order functions, recursion, and immutability

Usability and Relationship to other Modules

Familiarity with the basics of functional programming, and the Haskell programming language is
fundamental for almost all advanced modules in computer science that rely on functional
programming. This course introduces advanced concepts of functional programming such as persistent
data structures, type-level programming, and meta-programming, which are needed in advanced
programming-oriented modules such as functional software design, functional programming
languages, and formal verification. Understanding the principles of functional programming and the
Haskell programming language will enable students to apply these concepts in various fields such as
computer science, finance, and data analysis. Additionally, the course provides a solid ground to use
functional programming principles in mainstream programming languages such as Scala, F#, or OCaml.
This module belongs to the Programming Languages Track in the MSc AST

Intended Learning Outcomes

No | Competence ILO

1 | Understand Understand advanced concepts and design patterns in functional
programming, and be able to apply them to design and implement
functional programs.

2 | Interact Interact with the external world using functional programming
techniques, such as 10 Monad, and other related concepts.

3 | Profile Profile and debug functional programs and identify performance
bottlenecks.

4 | Understand Understand and implement persistent data structures in functional
programming, such as persistent arrays and persistent linked lists.

5 | Learn Learn how to use type-level programming and meta-programming

in functional programming, such as type-level programming with
type families, GADT, and other related topics.

6 | Develop Develop hands-on experience with the Haskell programming
language and be able to apply functional programming concepts in
other mainstream programming languages.

Indicative Literature

e Hudak, Paul. "The Haskell school of expression: learning functional programming through
multMedia." (1999).

e L6h, Andres. "Functional pearl: The monad-reader pattern." (2009).

e Marlow, Simon. Parallel and Concurrent Programming in Haskell. O'Reilly Media, Inc., 2013.

e (O'Sullivan, Bryan, John Goerzen, and Don Stewart. Real World Haskell. O'Reilly Media, Inc.,
2008.

81

e RdOjemo, Andras, and Erik Hesselink. "Functional pearl: Implicit configurations." (2010).
e Thompson, Simon. Haskell: The Craft of Functional Programming. Addison-Wesley, 1999.
e Wadler, Philip, and Stephanie Weirich. "The essence of functional programming." (2002).

Entry Requirements

Prerequisites None

Co-requisites None

Additional Remarks None

Assessment and Completion
Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass

Advanced Functional | Program Code 50 45% All

Programming - Tutorial practical
ILOs of
the
module

Advanced Functional | Written 120 50 45% All

Programming Examination Minutes theoretic
al ILOs of
the
module

Module Achievement

82

4.1.24 Virtual Machines in Compilers

Module Name

Virtual Machines in Compilers

Module Code

2025-MAST-106

Module ECTS

5

Program Owner

2025-AST-MSc
(Advanced Software Technology)

Module Coordinator

Prof. Dr. Kirill Krinkin

Study Semester
Program Semester | Status
2025-AST-MSc 1 Mandatory
Advanced Software Technology Elective
2025-AST-MSc 3 Mandatory
Advanced Software Technology Elective
Student Workload
Exam Preparation | 20
Independent Study | 70
Lecture | 17.5
Tutorial | 17.5
Total Hours | 125
Module Components Number Type cp
Virtual Machines in Compilers MAST-106-A Lecture/Tutorial 5

Module Description

Modern compilers often use an intermediate target such as a virtual machine (JVM, .NET) or an
intermediate representation (LLVM). In this module, students will learn how to construct compilers
that make use of such virtual machines. Considerable attention is paid to issues related to the
theoretical foundations and practical methods for generating efficient code targeting virtual machines

that takes into account the details of the machine in question.

Content:

- Introduction- Why do we need virtual machines?

- Structure of a compiler

- One frontend, multiple backends: intermediate representations in production compilers

- Virtual machine performance

- Kotlinc as a case study of a modern compiller

Recommended Knowledge

The basics of computer systems and operating systems.

83

Usability and Relationship to other Modules

- Familiarity with a mainstream programming language such as Kotlin. Having followed a basic course
on compilers is a plus.

- This module belongs to the Programming Languages Track in the MSc AST

Intended Learning Outcomes

No | Competence ILO

1 | Know Know the main examples of popular virtual machines; main
considerations to keep in mind when targeting virtual machines;
main features of the implementation of existing VMs.

2 | Create Create a compiler that targets a virtual machine.
3 | Have Have the skills (gain experience) of building secure and reliable
virtual machines; application of implementation algorithms for JIT
compilers, physical memory managers.

Indicative Literature

e “Programming for the Java Virtual Machine”, Joshua Engel, 1999.

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Virtual Machines in | Program Code 100 45% 1-3
Compilers

Module Achievement

84

4.1.25 Formal Verification

Module Name Formal Verification
Module Code 2025-MAST-214
Module ECTS 5
Program Owner 2025-AST-MSc
(Advanced Software Technology)
Module Coordinator
Study Semester
Program Semester | Status
2025-AST-MSc 3 Mandatory
Advanced Software Technology Elective
Student Workload
Class Attendance | 17.5
Tutorial | 17.5
Independent Study | 70
Exam Preparation | 20
Total Hours | 125
Module Components Number Type cp
Formal Verification MAST-214-A Lecture/Tutorial 5

Module Description

Formal verification is used to prove stronger code correctness guarantees than can be done using most
of type systems. In this module, students will learn how to use Dafny, a modern formal verification
language, to reason about imperative code. Students will learn about Hoare logic, the theory
underlying most formal verification, and will gain a deep understanding of how Dafny uses an SMT
solver to help with verification.

Content:

- Introduction to Dafny: preconditions, postconditions, invariants
- Advanced Dafny: triggers, performance considerations

- SMT solvers: theory and implementation

- Hoare logic

Recommended Knowledge

Students should be familiar with an imperative programming language. A course on type theory is
recommended.

85

Intended Learning Outcomes

No | Competence ILO

1 | Understand Understand the principles of Hoare logic and how these are used for
the design of a verification language like Dafny.

2 | Understand Understand the role of SMT solvers in formal verification.

3 | Use Use functional requirements to formulate and verify specifications
on code.

4 | Debug Debug verification failures by formulating lemmas, strengthening
preconditions and invariants, and guiding the solver.

Indicative Literature

e Leino, K. Rustan M. “Program Proofs.”, MIT Press, 2023.

Entry Requirements

Prerequisites None

Co-requisites None

Additional Remarks None

Assessment and Completion
Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Formal Verification Program Code 100 45% 1-4

Module Achievement

86

4.1.26 Dependent Types

Module Name Dependent Types
Module Code 2025-MAST-209
Module ECTS 5
Program Owner 2025-AST-MSc
(Advanced Software Technology)
Module Coordinator Prof. Dr. Anton Podkopaev
Study Semester
Program Semester | Status
2025-AST-MSc 3 Mandatory
Advanced Software Technology Elective
Student Workload
Independent Study | 90
Lecture | 17.5
Tutorial | 17.5
Total Hours | 125

Module Components Number Type cp
Dependent Types MAST-209-A Lecture/Tutorial 5

Module Description

In this course, we'll learn the basics of program verification, specification, and formal theorem proving,
We will also talk about the theoretic foundation of dependently typed systems. By the end of the
course, students will be able to formulate and prove correctness properties of functional programs,
algorithms, and simple maths theorems.

Content:

- Simple types

- Subtypes and Recursive Types
- Polymorphic types

- Type systems of higher orders

Recommended Knowledge

To master the module students need the knowledge gained from studying the module s "Formal
languages", and "Functional programming".

Usability and Relationship to other Modules

- Familiarity with basic concepts of programming languages and formal methods is fundamental for
almost all advanced modules in computer science and software engineering. This module additionally

87

introduces advanced concepts of type systems, type inference, and type-based program analysis that
are needed in advanced programming languages-oriented modules in the 2nd year of the MSc
program, as well as for research purposes.

- This module belongs to the Programming Languages Track in the MSc AST

Intended Learning Outcomes

ILO

Understand the
programming.

No | Competence
1 | Understand

relationship between logic and functional

2 | Know Know various type-theoretic constructions occurring in dependently
typed languages.

3 | Formulate Formulate and prove simple theorems.

4 | Prove Prove correctness of various algorithms.

Indicative Literature

e "Advanced Topics in Types and Programming Languages" by Benjamin C Pierce MIT Press,
2005.

o "Introduction to the Theory of Programming Languages" by Michael JC Gordon Cambridge
University Press, 1996.

e "Types and Programming Languages" by Benjamin C Pierce MIT Press, 2002.

Entry Requirements

Prerequisites None

Co-requisites None

Additional Remarks None

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs

Type or (%) m for
Length Pass

Dependent Types Practical 100 45% 1-4

Assessment

Module Achievement

88

4.1.27 Type Theory

Module Name Type Theory
Module Code 2025-MAST-210
Module ECTS 5
Program Owner 2025-AST-MSc
(Advanced Software Technology)
Module Coordinator Prof. Dr. Alexander Omelchenko
Study Semester
Program Semester | Status
2025-AST-MSc 3 Mandatory
Advanced Software Technology Elective
Student Workload
Independent Study | 90
Lecture/Tutorial | 35
Total Hours | 125
Module Components Number Type cp
Type Theory MAST-210-A Lecture/Tutorial 5

Module Description

The module aims to provide students with theoretical knowledge and practical skills in understanding
the basic principles and concepts of homotopy type theory, developing the ability to express
homotopy-theoretic concepts in the language of homotopy type theory, learning the relationship of
homotopy type theory with logic, set theory, and group theory, understanding how homotopy type
theory can be applied in programming languages, developing the ability to use homotopy type theory
to prove theorems in geometry and topology.

Content:

- Introduction to type theory and its extensions

- Fundamentals of homotopy theory and its relationship to geometry and topology
- Logic, set theory, and group theory in the context of homotopy type theory

- Concepts from homotopy theory expressed in the language of homotopy type theory

Recommended Knowledge

Students are expected to be familiar with imperative and functional programming languages.

Usability and Relationship to other Modules

- Familiarity with statically typed programming languages, both imperative and functional, is expected.
This module introduces a variety of topics related to type theory that will prepare students both for

89

practical applications, and provide a baseline for courses such as formal verification and dependent
type theory.

- This module belongs to the Programming Languages Track in the MSc AST

Intended Learning Outcomes

No | Competence ILO

1 | Understand Understand the fundamental concepts and principles of type theory
and its relationship to logic, set theory, and category theory.

2 | Express Express concepts in the language of type theory and use this
language to express properties of the type system.

3 | Understand Understand the connection between type theory and programming
languages and be able to apply type theory in the context of
programming languages.

4 | Write Write and understand typing derivations, type checkers, and type
inference engines.

5 | Understand Understand the basic concepts of model theory and domain theory
and how they relate to type theory.

6 | Understand Understand the basic concepts of functional programming and how
they relate to type theory.

7 | Understand Understand how the concepts of type theory can be used to reason
about and reason with the properties of programs and systems.

8 | Communicate | Communicate effectively and express your understanding of type
theory in written and oral form.

Indicative Literature

Awodey, Steve. Category theory. Vol. 48. Oxford: Clarendon Press, 2006.

Homotopy Type Theory: Univalent Foundations of Mathematics. The Univalent Foundations
Program, Institute for Advanced Study, 2013.

Martin-Lof, Per. "Intuitionistic type theory." Bibliopolis (1984): 343-441.

Pierce, Benjamin. “Types and Programming Languages.” MIT Press, 2002.

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Type Theory Program Code 100 45% 1-8

90

Module Achievement

91

4.1.28 Category Theory for Programmers

Module Name

Category Theory for Programmers

Module Code

2025-MAST-211

Module ECTS

5

Program Owner

2025-AST-MSc
(Advanced Software Technology)

Module Coordinator

Prof. Dr. Alexander Omelchenko

Study Semester
Program Semester | Status
2025-AST-MSc 2 Mandatory
Advanced Software Technology Elective

Student Workload

Independent Study | 90

Lecture/Tutorial | 35
Total Hours | 125

Module Components Number Type cp
Category Theory for Programmers MAST-211-A Lecture/Tutorial 5

Module Description

The module is aimed at developing students' theoretical knowledge and practical skills related to the
course introduces the basic concepts of category
Students will learn to understand commutative

use of functional programming languages. The
theory, such as category, functor and monad.

diagrams. The course will help you better understand modern programming languages such as Agda,
Coq and Idris. To master the module , students need to have knowledge of set theory, algebra, and

topology.

Content:

- Introduction to category theory and its basic structures

- Fundamental concepts and theorems of category theory

- Relationship with functional programming and type theory

- Introduction to toposes and their internal language

Recommended Knowledge

Good understanding of the fundamental concepts of mathematics, such as set theory, logic and

functions.

92

Usability and Relationship to other Modules

- Familiarity with basic concepts of mathematics and programming is fundamental for almost all
advanced modules in computer science and software engineering. This module additionally introduces
advanced concepts of category theory and its application to functional programming and type systems
that are needed in advanced programming languages-oriented modules in the 2nd year of the MSc
program, as well as for research purposes.

- This module belongs to the Programming Languages Track in the MSc AST

Intended Learning Outcomes

No | Competence ILO
1 | Know Know the basics of category theory.
2 | Understand Understand categorical models of lambda calculus and simple type
theory.
3 | Understand Understand the relationship between, logic, type theory, and
category theory.
4 | Work Work within the internal language of a topos.

Indicative Literature

o "Categories and Types in Logic Language and Physics" by Bob Coecke Aleks Kissinger and
Mehrnoosh Sadrzadeh Cambridge University Press, 2018.

e "Categories for the Working Mathematician" by Saunders Mac Lane Springer, 1971.

e "Category Theory for Programmers" by Bartosz Milewski, self-published, 2018.

e "Conceptual Mathematics: A First Introduction to Categories" by F William Lawvere and
Stephen Hoel Schanuel Cambridge University Press, 1997.

e "The Joy of Cats" by Barry Mazur and Emily Riehl American Mathematical Society, 2020.

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Category Theory for | Written 120 100 45% 1-4
Programmers Examination Minutes

Module Achievement

93

4.1.29 Capstone Project |

Module Name Capstone Project |
Module Code 2025-MCSSE-CAP-01
Module ECTS 5
Program Owner 2025-CSSE-MSc
(Computer Science & Software Engineering)
Module Coordinator Prof. Dr. Manuel Oriol
Study Semester
Program Semester | Status
2025-AST-MSc 1 Mandatory
Advanced Software Technology Elective
2025-CSSE-MSc 1 Mandatory
Computer Science & Software Engineering Elective

Student Workload

Lecture | 35

Tutorial | 35

Project (Group-Based and Independent | 55
Work)
Total Hours | 125

Module Components Number Type cp
Capstone Project 1 MCSSE-CAP-01 Project 5

Module Description

This series of Capstone modules gives the possibility of experiencing knowledge and expertise learned
in the master by a posteriori analysis, transformational adaptation and coherent planning hands-on
practice. The series spans over three modules during which students develop a complete product from
scratch. The project starts with an ideation process, creation of clickable demos and initial
requirements. It continues with the practical creation of a software architecture and development of
the solution. It then finishes with application of artificial intelligence and cybersecurity. During the
project, students are going through various steps during which they are encouraged to talk directly to
potential real-world customers and users, thus gathering an understanding of what real users and
customers for their project might want.

The project is organized in tribes (20-30 people) in charge of exactly one project. The tribes are then
further split in agile teams working with the advice of the instructors and the assistants (impersonating
the business owners and product owners). The teams can be geographically distributed and work with
an up-to-date environment supported with open-source IDEs and engineering tools. Few lectures
indicate the best practices to follow and the interim goals. Periodic meetings with the instructor and
teaching assistants steer the process towards the overall goal.

This instance is the first semester of the Capstone project that focuses on ideation and requirements
elicitation.

94

Recommended Knowledge

- Programming skills in an imperative language at CS bachelor level.
- Algorithms and data structure at CS bachelor level

- Train and advance programming, read about agile development, watch videos on ideation processes
and read books on team and teamwork.

Usability and Relationship to other Modules

It is highly recommended to take the three Capstone Project modules in their numerical order to gain
the full experience of the project.

Intended Learning Outcomes

No | Competence ILO
1 | Create Create and propose mocks.
2 | Perform Perform requirements elicitation.
3 | Prototype Prototype
4 | Approach Approach customers and users.
5 | Specify Specify user stories.
6 | Organize Organize themselves through collaborative tools.
7 | Understand Understand team dynamics and resolve most interpersonal issues.

Indicative Literature

o o Online resources on team dynamics: - https://www.challengeapplications.com/stages-
of-team-development - https://agilescrumguide.com/blog/files/tag-5-stages-of-team-
development.html

e Bertrand Meyer: Agile! The good, the Hype and the Ugly. Springer, 2024

e Patrick Lencioni: The Five Dysfunctions of a Team. Jossey-Bass, 2022.

e Timothy M. Franz: Group dynamics and Teams interventions. Wiley-Blackwell, 2012

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Capstone Project 1 Project 100 45% 1-7
Assessment

95

Module Achievement

96

4.1.30 Capstone Project Il

Module Name Capstone Project Il
Module Code 2025-MCSSE-CAP-02
Module ECTS 5
Program Owner 2025-CSSE-MSc
(Computer Science & Software Engineering)
Module Coordinator Prof. Dr. Manuel Oriol
Study Semester
Program Semester | Status
2025-AST-MSc 2 Mandatory
Advanced Software Technology Elective
2025-CSSE-MSc 2 Mandatory
Computer Science & Software Engineering Elective

Student Workload

Lecture | 35

Tutorial | 35

Project (Group-Based and Independent | 55
Work)
Total Hours | 125

Module Components Number Type cp
Capstone Project Il 2025-MCSSE-CAP-02 | Project 5

Module Description

This series of courses gives the possibility of experiencing knowledge and expertise learned in the
master by a posteriori analysis, transformational adaptation and coherent planning hands-on practice.
The course series spans over three courses during which students develop a complete product from
scratch. The project starts with an ideation process, creation of clickable demos and initial
requirements. It continues with the practical creation of a software architecture and development of
the solution. It then finishes with application of artificial intelligence and cybersecurity. During the
project students are going through various steps during which they are encouraged to talk directly to
potential real-world customers and users, thus gathering an understanding of what real users and
customers for their project might want.

The project is organized in tribes (20-30 people) in charge of exactly one project. The tribes are then
further split in agile teams working with the advice of the instructors and the assistants (impersonating
the business owners and product owners). The teams can be geographically distributed and work with
an up-to-date environment supported with open source IDEs and engineering tools. Few lectures
indicate the best practices to follow and the interim goals. Periodic meetings with the instructor and
teaching assistants steer the process towards the overall goal.

This instance is the second semester of the capstone project that focuses on architecture and base
implementation.

97

Recommended Knowledge

- Programming skills in an imperative language at CS bachelor level.

- Algorithms and data structure at CS bachelor level

- Train and advance programming, read about agile development, watch videos on ideation processes

and read books on team and teamwork.

Usability and Relationship to other Modules

It is highly recommended to take the three Capstone Project modules in their numerical order to gain
the full experience of the project.

Intended Learning Outcomes

No | Competence ILO
1 | Describe Describe and defend a software architecture.
2 | Code Code in groups
3 | Code Code as a large team.
4 | Integrate Integrate independent works.
5 | Use Use a source code versioning system.
6 | Specify Specify user stories
7 | Hold Hold practical discussions with stakeholders.
8 | Organize Organize themselves through collaborative tools.
9 | Understand Understand team dynamics and resolve most interpersonal issues.

Indicative Literature

Bertrand Meyer: Agile! The good, the Hype and the Ugly. Springer, 2024

Online resources on team dynamics: - https://www.challengeapplications.com/stages-of-
team-development - https://agilescrumguide.com/blog/files/tag-5-stages-of-team-
development.html

Online resources on team dynamics: - https://www.challengeapplications.com/stages-of-
team-development - https://agilescrumguide.com/blog/files/tag-5-stages-of-team-
development.html

Patrick Lencioni: The Five Dysfunctions of a Team. Jossey-Bass, 2022.

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

98

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Capstone Project Il Project 100 45% 1-8
Assessment

Module Achievement

99

4.1.31 Capstone Project llI

Module Name Capstone Project Il
Module Code 2025-MCSSE-CAP-03
Module ECTS 5
Program Owner 2025-CSSE-MSc
(Computer Science & Software Engineering)
Module Coordinator Prof. Dr. Manuel Oriol
Study Semester
Program Semester | Status
2025-AST-MSc 3 Mandatory
Advanced Software Technology Elective
2025-CSSE-MSc 3 Mandatory
Computer Science & Software Engineering Elective
Student Workload
Lecture | 35
Tutorial | 35
Project (Group-Based and Independent | 55
Work)
Total Hours | 125

Module Components Number Type cp
Capstone Project Il MCSSE-CAP-03 Project 5

Module Description

This series of courses gives the possibility of experiencing knowledge and expertise learned in the
master by aposteriori analysis, transformational adaptation and coherent planning hands-on practice.
The course series spans over three courses during which students develop a complete product from
scratch. The project starts with an ideation process, creation of clickable demos and initial
requirements. It continues with the practical creation of a software architecture and development of
the solution. It then finishes with application of artificial intelligence and cybersecurity. During the
project students are going through various steps during which they are encouraged to talk directly to
potential real-world customers and users, thus gathering an understanding of what real users and
customers for their project might want.

The project is organized in tribes (20-30 people) in charge of exactly one project. The tribes are then
further split in agile teams working with the advice of the instructors and the assistants (impersonating
the business owners and product owners). The teams can be geographically distributed and work with
an up-to-date environment supported with open source IDEs and engineering tools. Few lectures
indicate the best practices to follow and the interim goals. Periodic meetings with the instructor and
teaching assistants steer the process towards the overall goal.

This instance is the third semester of the Capstone Project that focuses on integrating artificial
intelligence, cybersecurity, and develops best practices.

100

Recommended Knowledge

- Programming skills in an imperative language at CS bachelor level

- Algorithms and data structure at CS bachelor level

- Train and advance programming, read about agile development, watch videos on ideation processes

and read books on team and teamwork.

Usability and Relationship to other Modules

It is highly recommended to take the three Capstone Project modules in their numerical order to gain

the full experience of the project.

Intended Learning Outcomes

No | Competence ILO
1 | Know Know practical cybersecurity.
2 | Hold Hold practical discussions with stakeholders.
3 | Practice Practice of machine learning.
4 | Work Work with continuous improvements tools.
5 | Organize Organize themselves through collaborative tools.
6 | Understand Understand team dynamics and resolve most interpersonal issues.

Indicative Literature

e Bertrand Meyer: Agile! The good, the Hype and the Ugly. Springer, 2024

e Online resources on team dynamics: - https://www.challengeapplications.com/stages-of-

team-development - https://agilescrumguide.com/blog/files/tag-5-stages-of-team-

development.html.

e Patrick Lencioni: The Five Dysfunctions of a Team. Jossey-Bass, 2022.

e Timothy M. Franz: Group dynamics and Teams interventions. Wiley-Blackwell, 2012

Entry Requirements

Prerequisites None

Co-requisites None

Additional Remarks None

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs

Type or (%) m for
Length Pass

Capstone Project Il Project 100 45% 1-6

Assessment

101

Module Achievement

102

4.1.32 Technological Entrepreneurship 1

Module Name Technological Entrepreneurship 1
Module Code 2025-MAST-111
Module ECTS 5
Program Owner 2025-AST-MSc
(Advanced Software Technology)
Module Coordinator
Study Semester
Program Semester | Status
2025-AST-MSc 1 Mandatory
Advanced Software Technology Elective
Student Workload
Class Attendance | 35
Tutorial | 35
Independent Study | 55
Total Hours | 125
Module Components Number Type cp
Technological Entrepreneurship 1 MAST-111-A Lecture 5

Module Description

The goal of this course is to go together from a product idea to testing this hypothesis on real users.
During the course, students must refine their idea and justify it, first of all, for themselves: evaluate
competitors, evaluate the development, create a financial model, roughly understand their Go-to-
market. Understand what a prototype or MVP is and whether someone needs it or whether it is worth
abandoning the idea in this formulation (pivot).

In the first part of the course, students will have to choose an area of interest where they will formulate
a hypothesis for testing - a startup idea. For this purpose, a number of workshops will be organized,
where students will be told current news from different markets. These workshops will help students
assess their strengths and desire to work in a particular topic. Also, these workshops will present
unsolved problems and issues that can be taken as a basis and try to come up with a solution.

Also, during the workshops, students will practice the skill of coming up with ideas. According to the
developed methodology, students will come up with different startup ideas and learn to quickly defend
them.

The educational outcome of the first part of the program is the skill of rapid preliminary assessment
and defense of one's idea. The outcome of the semester is startup ideas that students will develop in
the next part of the program.

103

Usability and Relationship to other Modules

The educational outcome of the first part of the program is the skill of rapid preliminary assessment
and defense of one's idea. The outcome of the semester is startup ideas that students will develop in
the next part of the program.

Recommended Knowledge

-As preparation, start reading the press about startup news in America and Europe.
- View startups that applied to and/or just successfully completed the best global accelerators.

- View the top startups in the area of interest that have raised investments over the past year.

Intended Learning Outcomes

No | Competence ILO
1 | Formulate Formulate a product hypothesis.
2 | Defend Defend your idea with evidence and clear reasoning.
3 | Validate Validate your hypothesis.
4 | Demonstrate Demonstrate a basic understanding of markets where solutions can
be offered.
5 | Navigate Navigate market information quickly.
6 | Collaborate Collaborate effectively in teams-based activities.
7 | Find Find co-founder.
8 | Pitch Pitch the idea clearly and persuasively.

Indicative Literature

e Eric Ries: The Lean Startup: How Today's Entrepreneurs Use Continuous Innovation to Create
Radically Successful Businesses.

e Jason Fried, David Heinemeier Hansson: Rework.

e Jim Collins: Good to Great: Why Some Companies Make the Leap...And Others Don't.

e Peter Thiel: Zero to One: Notes on Startups, or How to Build the Future.

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Technological Project 100 45% 1-8
Entrepreneurship 1 Assessment

104

Module Achievement

105

4.1.33 Technological Entrepreneurship 2

Module Name Technological Entrepreneurship 2
Module Code 2025-MAST-112
Module ECTS 5
Program Owner 2025-AST-MSc

(Advanced Software Technology)
Module Coordinator

Study Semester
Program Semester | Status
2025-AST-MSc 2 Mandatory
Advanced Software Technology Elective
Student Workload
Class Attendance | 35
Tutorial | 35
Independent Study | 55
Total Hours | 125
Module Components Number Type cp
Technological Entrepreneurship 2 MAST-112-A Lecture 5

Module Description

The goal of this course is to go together from a product idea to testing this hypothesis on real users.
During the course, students must refine their idea and justify it, first of all, for themselves: evaluate
competitors, evaluate the development, create a financial model, roughly understand their Go-to-
market. Understand what a prototype or MVP is and whether someone needs it or whether it is worth
abandoning the idea in this formulation (pivot). To get to the second semester, students must pass the
project idea defense stage.

The task of the second semester is to test the hypothesis for its validity. First, students will have to
understand who their user or customer of the product is. Then, assess the market size and understand
to what extent existing solutions cover the pain of users. Understand what the competitive advantage
will be and why their team will be able to implement this idea.

Students will have to conduct research on the market and their users. Learn to collect feedback and
quickly change their hypothesis, according to feedback from the market. Students will also need to
come up with the cheapest way to test this hypothesis. Understand what the MVP can be and how to
assemble this minimum product in no more than 3-4 working weeks.

Students will also have to develop a financial and business model. Understand whether investments
will be needed to implement the project and the payback period. Students will have to defend the Go
To Market strategy and try to make the first sales or pre-sales.

At the end of the course, students will have to learn how to design a pitch deck. They will learn how to
make a good presentation and learn how to talk about their project.

106

Intended Learning Outcomes

No | Competence ILO
1 | Explain Explain a Good product and how your startup take off.
2 | Analyze Analyze the market size and develop the right strategy for a startup.
3 | Evaluate Evaluate who your user really is and whether they have a demand
for such a product.
4 | Determine Determine how to quickly test hypotheses and what role a
prototype plays in a startup.
5 | Describe Describe how to build a business and a financial model for a startup.
6 | Demonstrate Demonstrate the ability to start making your first sales.
7 | Communicate | Communicate how to do marketing without a budget or with a very
small budget.
8 | Communicate | Communicate how to develop a startup during the first years.
9 | Communicate | Communicate how to organize workflow at startup team.
10 | Articulate Articulate where to secure investments and when they are not
needed at all.
11 | Learn Learn how to make a pitch deck that will convince investors.
12 | Understand Understand how to communicate with a co-founder and when to
hire a team.

Indicative Literature

https://jetbrains.notion.site/Startup-School-2024-Guide-
57249773057743b487459afaeb98ae97

Entry Requirements

Prerequisites None

Co-requisites None

Additional Remarks None

Assessment and Completion
Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass

Technological Project 100 45% 1-12
Entrepreneurship 2 Assessment

Module Achievement

107

4.1.34 Internship

Module Name Internship
Module Code 2025-MAST-INT-01
Module ECTS 10

Program Owner

2025-AST-MSc
(Advanced Software Technology)

Module Coordinator

Study Semester
Program Semester | Status
2025-AST-MSc 3 Mandatory
Advanced Software Technology Elective
Student Workload
Internship | 230
Report Preparation | 20

Total Hours | 250
Module Components Number Type cp
Internship MAST-INT-01-A Internship 10

Module Description

The internship module provides students with the opportunity to gain hands-on experience in an

industrial or applied research setting relevant to their field of study. Its primary goals are to explore
potential directions for the Master's thesis, apply and deepen skills acquired in coursework, and

develop a better understanding of real-world challenges in software engineering and computer
science. A minimum of 230 working hours (i.e., approx. 6 weeks of full-time occupation) is required for

the successful completion of this module. An internship should be approved by the Study Program

Coordinator (SPC) based on a prior evaluation of the planned tasks. It is typically scheduled during the

summer between the second and third semesters or the third semester. Students submit a short

reflective report, connecting their internship experience with their academic learning and professional

goals. At the end of the course, students will have to learn how to design a pitch deck. They will learn
how to make a good presentation and learn how to talk about their project.

Intended Learning Outcomes

No | Competence ILO
1 | Apply Apply their skill, knowledge, and tools to real-world problems.
2 | Demonstrate Demonstrate professional work attitude and business etiquette.
3 | Collaborate Collaborate effectively in a professional environment.
4 | Improve Improve reporting skills.
5 | Explain Explain Real-world problems and suitable approaches in their field
of study.
6 | Engage Engage ethically with academic or professional communities.

108

Indicative Literature

e https://jetbrains.notion.site/Startup-School-2024-Guide-
57249773057743b487459afaeb98ae97

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None
Assessment and Completion
Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Internship Internship 2000 100 45% 1-2
Report or | words/
Business Plan | Completi
and Reflection | on:
Pass/Fail

Module Achievement

109

4.1.35 Research Project

Module Name

Research Project

Module Code

2025-MAST-201

Module ECTS

5

Program Owner

2025-AST-MSc
(Advanced Software Technology)

Module Coordinator

Prof. Dr. Alexander Omelchenko

Study Semester
Program Semester | Status
2025-AST-MSc 3 Mandatory
Advanced Software Technology Elective

Student Workload

Project (Independent Work) | 104

Research Group Meetings | 21
Total Hours | 125

Module Components Number Type cp
Research Project MAST-201-A Project 5

Module Description

The competencies and knowledge earned in the first two semesters are deepened by developing a
small research project. Students will be exposed to state-of-the-art research with the goal of
reproducing results of recent research papers or extending ideas presented in recent research papers.
Students will learn how to organize and execute a research project and how to present the results in
the format of a typical research paper. Students are expected to participate in the meetings of the
research group in which they are doing their research projects. The module is conducted together
with JetBrains which provides research topics for the students.

Intended Learning Outcomes

No | Competence

ILO

1 | Understand

Understand state-of-the-art research papers in a chosen field of
specialization.

2 | Plan Plan a research project to reproduce research results or to extend
ideas of recent research results.
3 | Explain Explain research questions and choose suitable methodologies to

address them.

4 | Document

Document a research project in the style of a typical scientific paper.

110

Indicative Literature

e Recent publications provided by the research project supervisors.

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Research Project Project Report | 5,000 100 45% 1-4
Words

Module Achievement

111

4.1.1 Master Thesis AST

Module Name Master Thesis AST
Module Code 2025-MAST-300
Module ECTS 30
Program Owner 2025-AST-MSc
(Advanced Software Technology)
Module Coordinator Prof. Dr. Alexander Omelchenko
Study Semester
Program Semester | Status
2025-AST-MSc 4 Mandatory
Advanced Software Technology

Student Workload
Independent Study | 750
Total Hours | 750
Module Components Number Type cp
Master Thesis AST MAST-300-T Thesis 30
MAST-300-T

Module Description

The aim of this module is to train students to motivate, design, carry out and document a research
project in one of the areas represented by the research groups of the faculty of AST. Some familiarity
with the requisite Advanced Software Technology techniques will typically have been acquired in one
of the preceding Advanced Projects. The thesis topic is determined in mutual agreement with the
module instructor. They may arise from the ongoing research in the instructord€™s own research
group, but it is also possible for a student to adopt a topic of his/her own choice provided the instructor
agrees to supervise it. The thesis work comprises the full cycle of a scientific research endeavor: (i)
identifying a relevant open research question, (ii) carrying out a literature survey to put the planned
work in its context and relate it to the state of the art (SoA), (iii) formulate a concrete research
objective, (iv) design a research plan including a statement of criteria to evaluate the success of the
project, (v) carry out the plan (with the possibility to change the original plan when motivated), (vi)
document the results, (vii) analyze the results with respect to the SoA, the original objective, and the
success criteria, and (viii) document all of this in a thesis report. All of this work should be done with
as much self-guidance as can be reasonably expected. The instructor will likely give substantial
guidance for (i) and (iii), whereas the other aspects will be addressed with larger degrees of self-
guidance. A research proposal document summarizing (i) 3€“ (iv) is expected as an interim result and
milestone (target size: 10 pages). In the first weeks of the course, an intense taught tutorial on scientific
working and writing is held. The subsequent weeks follow a seminar style where students present and
discuss literature as well as their own results to date. The project consists of the proposal, a thesis
report (target size: 303€“60 pages, and an oral presentation at the end of the course.

112

Recommended Knowledge

- Read the Syllabus

- Proficiency in the area of the chosen thesis topic.

Intended Learning Outcomes

No | Competence ILO

1 | Understand Understanding, at a professional level, of a circumscribed segment
of the hosting group's research area.

2 | Able Able to apply specific and selected AST techniques, as required for
the project, at a professional level.

3 General professional skills

4 | Design Designing and carrying out the full cycle of a scientific research
project in a professional manner.

5 | Formulate Formulating a research proposal such that that it could serve as a
funding proposal.

6 | Write Writing a research thesis such that it could be submitted to a
scientific publication venue, or as a project report to a funding
agency or industrial client.

7 | Present Presentation of project results for specialists and non-specialists.

Indicative Literature

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None
Assessment and Completion
Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Master Thesis AST Thesis 30-60 75 @ 45% of
pages compon
ent 1 and
2
Oral 20 25 Mainly
Examination minutes presenta
tion of
project
results
but the
presenta

113

tion
touches
all ILOs.

Module Achievement

114

5 Management Modules

5.1.1 Agile Product Development & Design

Module Name Agile Product Development & Design
Module Code 2025-MCSSE-MGT-01
Module ECTS 5
Program Owner 2025-CSSE-MSc
(Computer Science & Software Engineering)
Module Coordinator Prof. Dr. Jiirgen Schénwalder
Study Semester
Program Semester | Status
2025-CSSE-MSc 1 Mandatory
Computer Science & Software Engineering
2025-AST-MSc 3 Mandatory
Advanced Software Technology
Student Workload
Lecture | 80
Independent Study | 45
Total Hours | 125
Module Components Number Type cp
Agile Product Development & Design | MCSSE-MGT-01 Lecture 5

Module Description

This course is focused on key aspects of agile product and service development and design process.

State-of-the-art user centered design methods will be at the core of the course.

The overall goal of this module is to help managers without a business degree to learn, understand
and practice agile customer- and data-driven innovation processes in the information age. This module
helps students to understand today’s real-life challenges in a complex world, with wicked problems
and with multiple stakeholder interests, where unpredictable is common, and where managers need
to focus on achieving goals rather than repetitive tasks.

Students learn to develop and present innovative user-centered and theory-oriented solutions for real-

world challenges in an IT-driven world.

This course is strongly based on the agile paradigm of user-centeredness, user-centered design and
the ideas of the Service Dominant Logic. Service-dominant (S-D) logic is a meta-theoretical framework
for explaining value co-creation, through exchange, among configurations of actors.

Major challenges and concerns will be reflected:

115

- the role of the customer and data in a transformed business world

- new theories, concepts, and approaches (such as service dominant logic, customer integration,
gamification, new service models)

- new methods and management techniques in (service) innovation (Design Thinking)

- new methods in handling business processes: (agile) business process management - BPM

- ethics and security issues.

The module will enable students to collaborate across disciplines with experts from various areas.

Intended Learning Outcomes

No | Competence ILO

1 | Develop Develop practical knowledge and management skills, and mind sets
to master the challenges from an agile business environment.

2 | Understand Understand (routine) business processes in various context and how
to adapt business processes to an agile business environment (agile
Business Process Management).

3 | Summarize Summarize and classify the new data- and customer-driven
technologies in a business context.

4 | Understand Understand the ideas of the “service dominant logic” as a business
opportunity, such as user-centricity, value in use, value in
interaction, business service ecosystems.

5 | Apply Apply innovative creativity methods and processes for product and
software development (Design Thinking).

6 | Adapt Adapt to a new working culture based on a user-centricity, empathy,
and playful testing of new products and services.

Indicative Literature

Brenner, W., Uebernickel, F., Abrell, T. (2016). Design Thinking as Mindset, Process, and
Toolbox, in: Brenner, W., Uebernickel, F. (Eds.), Design Thinking for Innovation. Springer
International Publishing, pp. 3-21. https://doi.org/10.1007/978-3-319-26100-3_1. Brown, T.
(2008). Design Thinking. Harvard Business Review. 86, 84-92. Available at:
https://hbr.org/2008/06/design-thinking.

Daniel Paschek, D., Frank Rennung, F., Trusculescu, A., Draghici,A. (2016). Corporate
Development with Agile Business Process Modeling as a Key Success Factor, Procedia
Computer Science, Vol 100, Pages 1168-1175, ISSN 1877-0509,
https://doi.org/10.1016/j.procs.2016.09.273.

Vargo, S.L., & Lusch, R. (2004). Evolving to a New Dominant Logic for Marketing. Journal of
Marketing, Vol. 68(1), 1 —17. Vargo SL, Akaka MA, Vaughan CM. (2017). Conceptualizing Value:
A Service-ecosystem View. Journal of Creating Value. 3(2):117-124.
https://doi.org/10.1177%2F2394964317732861. Lusch, R.F., Nambisan, S. (2015). Service
Innovation: A Service-Dominant Logic Perspective. MIS Quarterly. Vol. 39 No.1, pp. 155-175.
https://doi.org/10.25300/M15Q/2015/39.1.07.

116

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Agile Product Presentation 30 100 45% 1-6
Development & Design minutes

Module Achievement

117

5.1.2 Product Innovation & Marketing

Module Name

Product Innovation & Marketing

Module Code

2025-MCSSE-MGT-02

Module ECTS

5

Program Owner

2025-CSSE-MSc
(Computer Science & Software Engineering)

Module Coordinator

Dr. PingPing Meckel

Study Semester
Program Semester | Status
2025-AST-MSc 2 Mandatory
Advanced Software Technology
2025-CSSE-MSc 2 Mandatory
Computer Science & Software Engineering
Student Workload
Lecture | 80
Independent Study | 45
Total Hours | 125
Module Components Number Type cp
Product Innovation & Marketing MCSSE-MGT-02 Lecture 5

Module Description

This course focuses on key strategic aspects of the innovation and commercialization process. The
course draws on insights from a variety of fields — in particular, product management, innovation,
marketing, and strategic management —in order to (i) develop a holistic, state-of-the art understanding
of this process, (ii) to nurture the underlying mindset that spans technology and market elements, and
(iii) to provide students with concrete tools that help them in navigating the journey from product idea
to market success. The course will take both the perspective of established companies as well as of
new ventures.

Intended Learning Outcomes

No | Competence ILO

1 | Understand Understand the innovation process, particularly in technology
domains.

2 | Understand Understand the commercialization process, particularly in
technology domains.

3 | Analyze Analyze how value can be created and appropriated through
innovation.

4 | Understand Understand and apply tools, methods and concepts to manage the
commercialization process.

118

Indicative Literature

e Kotler, P. et al. (2024). Principles of Marketing, Global Edition. 19th ed. Harlow: Pearson
Education Limited.

e Schilling, M.A. (2019). Strategic Management of Technological Innovation. McGraw-Hill.

e Tidd, J. and Bessant, J. (2021). Managing Innovation: Integrating Technological, Market and
Organizational Change. 7th ed. Hoboken: Wiley.

Entry Requirements

2025-MCSSE-LAS-01
Entrepreneurship and Intrapreneurship

Prerequisites

Co-requisites None
Additional Remarks None
Assessment and Completion
Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Product Innovation & | Presentation 30 100 45% 1-4
Marketing minutes

Module Achievement

119

5.1.3 Entrepreneurship and Intrapreneurship

Module Name Entrepreneurship and Intrapreneurship
Module Code 2025-MCSSE-LAS-01
Module ECTS 2.5
Program Owner 2025-CSSE-MSc
(Computer Science & Software Engineering)
Module Coordinator Dr. PingPing Meckel
Study Semester
Program Semester | Status
2025-AST-MSc 1 Mandatory
Advanced Software Technology
2025-CSSE-MSc 1 Mandatory
Computer Science & Software Engineering
Student Workload
Lecture | 17.5
Independent Study | 45
Total Hours | 62.5
Module Components Number Type cp
Entrepreneurship and | MCSSE-LAS-01 Lecture 2.5
Intrapreneurship

Module Description

The module introduces students to the themes which are relevant to clearly develop corporate
innovation and entrepreneurship as an activity. It introduces entrepreneurial thinking styles that are
important to develop radical forms of innovation in companies. This is about a way of thinking,
reasoning and acting that is opportunity obsessed and holistic in approach. It is first and foremost a
process that has an intention to create, enhance, realize, and renew value, not just for owners, but for
all participants and stakeholders in either a new or existing organization. Today, entrepreneurship has
evolved beyond the classic start-up notion to include companies and organizations of all types, old and
new; small and large; fast and slow growing; private, not-for-profit, and public.

This focus on “entrepreneurship as a process” has become a fundamental part for three main reasons.
The first is the growing recognition of the critical importance of entrepreneurial activities in the
economy and the society at large. As such, having an insight in the specific challenges and solutions
that characterize entrepreneurship has broader implications for any 21st century graduate. The second
reason is that many graduates eventually find themselves occupying a position as entrepreneur, or are
associated with one as their financier, partner, supplier or customer. This requires an action-oriented
approach and approaching the phenomenon from multiple angles. Finally, given the specific challenges
entrepreneurs often face in terms of uncertainty and resource scarcity, solutions applied by expert
entrepreneurs can be of value to any professional that finds him/herself in similar situations in
organizations seeking growth, renewal or even survival.

120

The module focuses on the tasks and skills that entrepreneurs typically complete/use in their journey
towards success. With this in mind, this module aims to provide students with insight into the approach
entrepreneurs use to identify opportunities and build new ventures; the analytical skills that are
needed to implement this approach; and the background knowledge and managerial skills that are
needed for dealing with issues involved in starting, growing, and harnessing the value of new ventures.
First and foremost, however, entrepreneurship is about action. Hence our approach is based on the
primary objective of having students experience entrepreneurship.

This module is intentionally designed as a 2.5 CP module to enhance Employability by exposing
students to a variety of professionally relevant topics rather than requiring in-depth specialization.

Intended Learning Outcomes

No | Competence

ILO

1 | Understand Understand the essence of entrepreneurship.
2 | Assess Assess and develop a business case.
3 | Analyze Analyze and identify new venture opportunities in a more

systematic way.

4 | Understand

Understand the importance of a business model for new venture
creation.

5 | Evaluate

Evaluate the viability of a new venture idea.

)]

Understand

Understand how to finance a new venture.

7 | Create

Create and present a business case for a new venture.

Indicative Literature

e Greene, F.J. (2020). Entrepreneurship: Theory and Practice. London: Macmillan Education Ltd.
e Jones, O., Meckel, P., and Taylor, D. (2021). Creating Communities of Practice: Entrepreneurial
Learning in a University-Based Incubator. Cham: Springer International Publishing AG.
https://ebookcentral.proquest.com/lib/constructor-university/detail.action?docID=6467881.
e Rae, D. (2015). Opportunity-Centred Entrepreneurship. 2nd ed. London: Palgrave.

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Entrepreneurship and | Presentation 30 100 45% 1-7
Intrapreneurship minutes

121

Module Achievement

122

5.1.4 Agile Leadership and Strategic Management

Module Name Agile Leadership and Strategic Management

Module Code 2025-MCSSE-LAS-03

Module ECTS 2.5

Program Owner 2025-MBA-120-MA

(MBA 120)

Module Coordinator Prof. Dr. Adalbert F.X. Wilhelm

Study Semester

Program Semester | Status

2025-AST-MSc 1 Mandatory
Advanced Software Technology

2025-MBA-120-MA 1 Mandatory
MBA 120

2025-CSSE-MSc 3 Mandatory
Computer Science & Software Engineering

Student Workload
Lecture | 17.5
Independent Study | 45
Total Hours | 62.5
Module Components Number Type cp
Agile Leadership and Strategic MCSSE-LAS-03 Lecture 2.5
Management

Module Description

This module focuses on key strategic aspects of the leadership and strategy development processes,
specifically strategic problems solving, alignment, engagement and coping with black swans and
paradigm shifts. The module draws insights from a variety of fields such as business strategy, problem
solving, strategic communication, strategic planning, and strategic resilience.

To build a holistic understanding, the module deals with the following topics:
- The strategic process: from analysis, definition, planning and evaluation

- Hypothesis driven problem solving

- Pyramid principle strategic communication

- Antifragile strategies

The module assessment will consist of three presentations. Students will know in the first session
which topics need to be covered in their presentations.

This module is intentionally designed as a 2.5 CP module to enhance Employability by exposing
students to a variety of professionally relevant topics rather than requiring in-depth specialization

123

Intended Learning Outcomes

No | Competence ILO

1 | Understand Understand and analyze business strategies.

2 | Understand Understand and analyze strategic statements and levels of ambition.

3 | Understand Understand opportunities and threats on the external environment.

4 | Evaluate Evaluate sources of competitive advantage as well as strategic
strengths and weaknesses.

5 | Analyze Analyze core challenges of agile leadership and strategy
development.

6 | Develop Develop and communicate strategic initiatives.

7 | Apply Apply this knowledge to real-world strategic planning processes.

Indicative Literature

e Sola, D. & Couturier, J, 2013, How To Think Strategically, FT Publishing International.

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Agile Leadership and | Presentation 30 100 45% 1-7
Strategic Management minutes

Module Achievement

124

6 Appendix

6.1 Intended Learning Outcomes Assessment-Matrix

MSc Advanced Software Technology

H 3
g H
£ &
5] K e
] € H <
H £ £ 2 £
2 g g 8 < 5 o
5 ¢ & 5 . ¥R P 5 E
£ @ = £z ¢ g 5 ¢ - ~
H £ S 3 3 E o< g8 2= 3 o 2
] g @ E e g E § [% £ 2 5 = z
4 H 2 s £ £ b 5w g E 2 g p 8 M]
s] 5 2 g g » g £ § 8 5 5 §] F
3 H § 2 3 4 % z g B o€ £ 5 § g§ E 2 3 E 8 g
g, 8 H 5 3¢ £ &8 £ =3 ¢ 5 HEAAR 5 ST i E e
£ £ 8 2 5 8 2 %o s o2 8 3 8 3 > 2| 2 £ 5 3 3 € 5 8 5 e s 8 E S EC
535 8 £ 5 £ s £ £ 2 2 2 % z £ 88 5 5 ¢ & z &8 3 2 2 s § 8558 §
2L f 58 EZEsE fEszsoeEs S8 5t g 593523 ¢
£ ® 3 € 3 £ 8 ¥ § & & 8 = § E 2 & 3 & & = T 5 = E 5 2 & 3 £ £ & S & S &
& £ 8 2 5 2 8 § 3 g g e 3 g 8% 2 3 % £ £ o £) 3
E S EF ¢ 2§35t rzsg i dLeyozSi:Eiiogiopopoitsefey
s 2 o 2 £ % g § £ & 5 5 £ 2 @ 5 4 & g 5 3 £ 5 sz g F g« § % 5 2y 5 g2 2o
25 2 8 % = £ % 246 8 % € g £ & s g 2 Sl 3 £ 2 8 0P oe g o g FlE %7 EZEGR
g :E H = § 5 = § 5§ & 2 8 g s 5 & S §E® 2w £ 2E £ 585 %S
£ 3 88 35 8 £ 835 & & & 35 8 &8 & 3 §5 & 2 68/ 8 E 8 s &> 8 & & &5 E[5 &858 88
Semester 1 1 1 1 1 1 2 2 2 2 2 2 3 1 2 3 3 1 2 3 1 1 2 3 3 3 3 3 3 2 3 3 3 4 3 11 2 2 3
Mandatory/ optional m me me me me me me me me me me M mMe me me Me me me me me me|me me me me me me me m me me me me|m me me me me me me
Credits 5 25 25 10]30 S 5 5 5 5 5
ympetencid
Program Learning Outcomes AEPS
critically assess and creatively apply technological
possibilities and innovations in the fields of data
X X x X oxoox X xx o xx o xxxx x xx x x x x x x|x x x x x x «x x[x ox x ox ox ox x
science, software development and programming
languages
critically assess and apply software engineering
methodologies considering real life situations, X x X x x x x x x X x x X X x x| x x x x x x x x[x x x x x x x

organizations and industries
use, adapt and improve modern techniques in data
science, such as deep learning, recommender

oxx X x o x X x X X x x x x x x x|x o x x o x x x x
systems, computer vision, and machine learning in
software engineering

apply discipli
and professional problems in the
y X X x x X ox oxox ox[x o ox ox o x o x o x x
context of software development and data science
critically assess and integrate a consistent tool set of
x X ox ox o ox x|x o ox x o x o x ox x

leadership abilities into a professional work X x x
environment

plan, conduct and document small research projects

in the context of data science, software development x x x X ox ox x X x
and programming languages

independently research, document and present a

scientific topic with appropriate language skills i x

use scientific methods s appropriate in the field of

data science and software engineering such as

defining research questions, justifying methods,

collecting, assessing and interpreting relevant X X X x X x xxxx o xxx x x o x o x xx x x x x x x|x ox x x o x ox x o x x x x x|[x x x x x x x
and drawing found

conclusions that consider social, scientific and ethical

insights

develop and advance solutions to problems and

arguments in their subject area and defend thesein X x x XX x o xx o x o x o x o xxxox o oxx o xxx o xx x x|xox ox x x ox x x ox x x ox|x ox o x x x x «x

discussions with specialists and non-specialists

engage ethically with academic, professional and

wider communities and to actively contribute to a

sustainable future, reflecting and respecting different % * S TR Tl N ol Sl Nl Nl A Sl Il Rl N TR TRl Rl Nl R B Ml Bl Il Bl Rl Bl Bl el Bl B

views

take responsibility for their own learning, personal

and professional development and role in society, X x x X oxox o x o x X xx x o x xx x xx xx x x x x| x ox x ox o x x x x x x x x|x x x x x x x

evaluating crtical feedback and self-analysis

apply their knowledge and understanding of data

science, software development, and programming X X x X oxox o x o x X xx x o x xx x xx xx X x x x| x o x ox x x x x x x x x x|x x x x x x x

languages to a professional context

take on responsibility in a diverse team X X X X x x x X X x x x X X x X X X X x x x x x x X X x X X X X x X X X X X X X X X

adhere to and defend ethical, scientific and

S rotessionn! standards X X x x X xx o xxxx o xxxx o x o oxx o x o xox o ox o oxx x|xoxoxx x oxox x o ox ox x ox|x ox o ox ox ox x «x

use and understand the Kotlin ecosystem x x x x x X x x x X x x x|x x x x x x x

apply data analytics techniques x X x x X x x x x|x ox ox o x x x «x

understand and utiize agile product development

and design methodologies il X il Ml Il Ml Tl ol o el e

understand and apply principles of quality T LT

engineering

[Assessment Type

Written examination x X x xx ox ox x x ox x x X x

Term paper

Essay

Project report M x x

Poster presentation

Laboratory Report

Program code X X X X X x x x X X X X x

Oral examination x

Presentation X x x x

Practical Assessments X x X x

Project Assessments X x x x x

Portfolio Assessments x x

Master Thesis x

Module achievements

* proficiency; for qualified P- of personality; for engagement in society

125

	1 Program Overview
	1.1 Concept
	1.2 Qualification Aims
	1.2.1 Educational Aims
	1.2.2 Intended Learning Outcomes

	1.3 Target Audience
	1.4 Career Options
	1.5 Admission Requirements
	1.6 More information and contacts

	2 The Curriculum
	2.1 The Curriculum at a Glance
	2.2 Study and Examination Plan
	2.3 Core Area (30 CP)
	2.4 Elective Area (30 CP)
	2.5 Management Area (15 CP)
	2.6 Capstone project, Research project and Master Thesis (45 CP)

	3 Advanced Software Technology Graduate Program Regulations
	3.1 Scope of These Regulations
	3.2 Examination Concept
	3.3 Degree
	3.4 Graduation Requirements

	4 Advanced Software Technology Modules
	4.1.1 Research Seminar
	Module Description
	Usability and Relationship to other Modules
	Recommended Knowledge
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	4.1.2 Programming Languages in Software Development
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	4.1.3 Machine Learning Overview
	Module Description
	Recommended Knowledge
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	4.1.4 Development Ecosystem
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	4.1.5 Architectural Strategy
	Module Description
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	4.1.6 Static Program Analysis
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	4.1.7 Quality Engineering
	Module Description
	Recommended Knowledge
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	4.1.8 Deep Learning
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	4.1.9 Optimization Methods in Machine Learning
	Module Description
	Usability and Relationship to other Modules
	Recommended Knowledge
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	4.1.10 Machine Learning in Software Engineering
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	4.1.11 Machine Learning Applications
	Module Description
	Recommended Knowledge
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	4.1.12 Bayesian Methods in Machine Learning
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	4.1.13 Deep Bayesian Models
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	4.1.14 Data Analytics
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	4.1.15 Reinforcement Learning
	Module Description
	Usability and Relationship to other Modules
	Recommended Knowledge
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	4.1.16 Large Scale Deep Learning Models
	Module Description
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	4.1.17 Industrial Machine Learning on Hadoop and Spark
	Module Description
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	4.1.18 Big Data Software Engineering
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	4.1.19 Cryptography
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	4.1.20 System Security
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	4.1.21 Network Security
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	4.1.22 IDE Development
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	4.1.23 Advanced Functional Programming
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	4.1.24 Virtual Machines in Compilers
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	4.1.25 Formal Verification
	Module Description
	Recommended Knowledge
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	4.1.26 Dependent Types
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	4.1.27 Type Theory
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	4.1.28 Category Theory for Programmers
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	4.1.29 Capstone Project I
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	4.1.30 Capstone Project II
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	4.1.31 Capstone Project III
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	4.1.32 Technological Entrepreneurship 1
	Module Description
	Usability and Relationship to other Modules
	Recommended Knowledge
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	4.1.33 Technological Entrepreneurship 2
	Module Description
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	4.1.34 Internship
	Module Description
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	4.1.35 Research Project
	Module Description
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	4.1.1 Master Thesis AST
	Module Description
	Recommended Knowledge
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	5 Management Modules
	5.1.1 Agile Product Development & Design
	Module Description
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	5.1.2 Product Innovation & Marketing
	Module Description
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	5.1.3 Entrepreneurship and Intrapreneurship
	Module Description
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	5.1.4 Agile Leadership and Strategic Management
	Module Description
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	6 Appendix
	6.1 Intended Learning Outcomes Assessment-Matrix

