C>ONSTRUCTOR
UNIVERSITY

Study
Program
Handbook

Software, Data and
Technology

Bachelor of Science

Subject-specific Examination Regulations for Software, Data and Technology

(Fachspezifische Priifungsordnung)

The subject-specific examination regulations for Software, Data and Technology are defined by this
program handbook and are valid only in combination with the General Examination Regulations for
Undergraduate degree programs (General Examination Regulations = Rahmenprifungsordnung). This

handbook also contains the program-specific Study and Examination Plan (Chapter 6).

Upon graduation, students in this program will receive a Bachelor of Science (BSc) degree with a scope
of 180 ECTS (for specifics see Chapter 4 of this handbook).

Version
Fall 2025- V1.2
Fall 2025-V 1.1

Fall 2025-V 1.0

Valid as of

Sep 01, 2024

Sep 01, 2023

Decision

Feb 02, 2026

Dec 11, 2025

Nov 14, 2025

June 28, 2023

May 24, 2023

Details
Implementation of
Examination Concept

according to policies.

Non-substantial Minor
Change: Introduction of the
new GER module “Introduction
to German Culture & Society”

Editorial update: Corrected
error in Machine Learning;
removed Probability and
Random Processes as a
prerequisite.

Academic Senate approval of
study program name change
from “Data Science and
Software Development” to
“Software, Data and
Technology”

Originally approved by
Academic Senate

Contents

1 Program OVEIVIEWc.cecieereenreenerenereneresceensernssenssressresssessssssssnsssnsesasesassssssssnsssnsssnnsses 6
1.1 (6] g Tol= o | AUUT R O P PP PP PP PP PPPPPPPPUPPPPPPPPPPN 6
1.1.1 The Constructor University Educational Conceptcccccvuvieiecieieieiieee e e
1.1.2 PrOZIaM COMNCEPE i e e
1.2 Specific Advantages of Software, Data and Technology at Constructor University................ 7
1.3 Program-Specific EdUCAtioNal AIMS.........uuiiiiiieiiicciieeee et e e e e e brr e e e e e e e e ennes 8
1.3.1 QUATIFICATION AIMS <.ttt ettt et esbeesaeesane e
1.3.2 Intended Learning OULCOMEScciciiieeeiieie e ccieee e et e e ettee e e ette e e e s ate e e s e aee e s e sateeeessteeeenanenas
1.4 Career Options and SUPPOIt.........uuiiiiiee ettt e et e e e e e e rre e e e e e e e e snnrreeeeeeeeeesnnnreaeeeaeeas 9
1.5 AdMISSION REGUIFEMENTS.uiiiiiieeeiecciiieiee e e e ececreee e e e e e eecetrreeeeeseeesbtraeeeeaeseesanstssseeassesananes 10
1.6 More information and CONTACESociviiiiiiieiee e 11
2 The Curricular StrUCTUIEcccuuuuiiiiiiiiiiiitiiiiinie e s e e essssssssaaes 12
2.1 (CT=T o 1T o | I TP UPOU STV PR PPN 12
2.2 The Constructor University 4C MOdElcoocuiieiiiiiie sttt 12
221 YEAr 1 = CHOICE. ... ettt st ettt sbe e s s e s b e s b e neenne 13
2.2.2 YA 2 = CORE ..ttt sttt b e bt sttt et e bt e she e she e s an e s b e b e neenes 14
2.2.3 YEAr 3 — CAREER ...ttt e e e e st e e e e s e b re e e e e e e e nan 15
2.3 The CONSTRUGCTOR TFaCK....ecuveeeiiireeeiiiieieesiiteessiteeessieeeessteeeesssreesssssneeesssseeesssseeessssseees 17
23.1 METhOAS IMOTUIESeoiiiiiiiieeeet ettt sttt e sbe e s e s 18
2.3.2 NEW SKills MOAUIES......c..eeiiiiiieie ettt s s 18
2.33 German Language and Humanities Modulescccooecciiiiiieei e e e 19
3 Software Development @s @ MINOKcccuiiiiiiiieiiiiiieieerrneereneeerenserenserensesesasessnnnens 20
3.1 QUATIFICAtION ATMS Lottt s s s st s beesneesnees 20
3.2 Intended Learning OULCOMESuuiiiiiiieecciiiieeee e e eeecrrtte e e e e e e e esatrree e e e e e esesanbaaaeeeeeeseennssaaaeaaanas 20
33 Y/ oY [T F=l 2= [UT T =T 0 T=1 oY £ U RRR 20
34 (D= o T 21
4 Software, Data and Technology Undergraduate Program Regulations.........cccceeevennene 21
4.1 Scope of these REGUIALIONScccoieeeeiiieieee e e e 21
4.2 [T T - (o] o W @fo] g Tol=] o) AU 21
4.3 (D= o T 22
4.4 Graduation REQUINEMENTES .. .ciiiii ittt e et e e e e e e e e b ee e e e e s eesanbreeeeeeeeeeannrnneees 22
5 Schematic Study Plan for Software, Data and Technology......ccccccceceriencirencrieecrennnens 23

Study and EXamination Plan.......ccieeiieeiieeiiieiiteiereereerencrencrensrnnernnsrencresssenssensssasesnns 24

Software, Data and Technology Modulesccccceerreniirenieienireeniereeeerenereeneseeneeeees 26

7.1.1 Programming in Cand Geiiiiiiiie ettt e e e errr e e e e e s e et s e e e e e e e e eennnnaaaeeens 26
7.1.2 Industrial Programming With PYthoncooiiiiiiiii e 29
7.13 N QT Y2 13 SRR 32
7.1.4 YT T\ == o - PR PPRPRR 35
7.1.5 Digital Systems and Computer ArchiteCtUreccccvvieeeeii e, 38
7.1.6 Development in JVM LANGUAEES ...cceeeeeiecciiiieiee e e e ccciitteee e e e eeecnttrre e e e e s sesantaaaeeeeessennnssnneeens 41
7.1.7 Core Algorithms and Data StrUCTUIES........ccccuiiiiiiiiee ettt e e e e e e 44
7.1.8 Mathematical Foundations of Computer SCIENCE........cccvuveiiiiiiiee i 47
7.1.9 (@7 T=T o= AT Y= V£ €= ' 1t 50
7.1.10 FUNCtional Programmingceeciiicciiiiiieee e ccciiiee e e e e e ectaee e e e e e s e esnnrraeeeaeesennnreeeeaaesesnnsnnes 53
7.1.11 Scientific Data AN@lYSiSuuuiiiiiiieicciiieie ettt e e e e e e e e e e e r e e e e e e s e ararraeaaeeeeannnnes 56
7.1.12 Advanced Algorithms and Data StrUCLUIESccccuieeieiiiee e 59
2 R R T |V F- 1ol o | T TR =Y [1o V- TP 62
7.1.14 Discrete MathematiCsc.cooiuieiiiieiiieie ettt st et e s e sare s 65
7.1.15 Artificial INTeHIZENCE e e e e e e e r e e e e e e nnnes 67
7.1.16 Software Engineering and DeSIZN.......cccuuieiiiiiieieiiiee et eereeeerree e bre e e aae e e e rree e s eareeas 70
7.1.17 Database FUNAAamMENTAlScociiiiiiieiieiee et 75
0 S T B 1T o == T o o1 o =SSP PPPPPPPPPPPPPPPPRE 78
7.1.19 Stochastic Modeling and Financial Mathematics.........cccooveeeeeiiiccciiieee e, 81
7.1.20 Optimization MEtROAScoiiiiiieceeee nnnnes 84
7.1.21 Natural Language PrOCESSING ...ccccviiiiiiiiieiciiieeeeciteeeerrte e e estte e e e evae e s e eabeee s ssaaaee e e abeeeeesnreeas 88
7.1.22 Distributed AIGOMTNMSooieiiee e e e e e e e earaeas 91
7.1.23 CompPULEr NEEWOIKS ..t e e e e e e e e e e e e e e s e annreeeeeeeeeennnnes 94
7.1.24 Databases INTerNaAlScocuiiiii i 97
7.1.25 Integrated Development and IT Operationsccccceeeeeeiciiieeie e e e 100
7.1.26 Parallel Programmingcccccuieeeiciiee ettt e e et e e eite e e e e are e e e snae e s e sbaee e e saraeeeennnneas 103
7.1.27 Formal Languages and Parserscccccceeeiecieieeeiieeeceitee e e ettee e e sttee e e sitee e e sntee e e snaeeaeeanneas 106
0 7 T o o Yo 11T USSR 110
7.1.29 Semantics of Programming LANgUAEES.cccoecuuirieiieeeeeecciiieeee e e eeeccitrre e e e e e e e e snnrnaeeeaeeeeens 113
7.1.30 Advanced Discrete MathematiCs........coocueiiiiiiiiiiiiie e 116
7.1.1 Internship / Startup and Career SKillS........ccovuierieeieeiieieecee ettt ere e 118
7.1.1 Bachelor Thesis and SEMINAr SDTcociiiiiiiiriieieeieesee ettt 123
Constructor Track ModUIESccooiieieeeuiiiiiiiiiiirii s 126

8.1 METhOdS IMOUIEScoueieiieiieiite et s st s sb e e e 126
8.1.1 Elements of LINnear AlZEDravee it e e e e 126
8.1.2 Elements Of CalCUIUS.coouiiiee e e e s 129
8.1.3 Matrix Algebra and Advanced CalCulUs |........ccuieiiiiiieiiiiee e 132
8.1.4 Matrix Algebra and Advanced CalCulus Ilcc.ueeeieiiie i 135
8.1.5 Probability and RaNdOm ProCeSSeSuuiiieieeieiiiiiiiiiee e e ecirte et e e e eerrree e e e e e nnreae e 138
8.1.6 Statistics aNd Data ANalytiCS...cuiii i e e 142

8.2 NEW SKillS IMOAUIES.....ccneiiiiieeiee ettt st s e e e e e snee e saneas 145
8.2.1 oY =4 o [o1 oy o Y=ot 4 V<IN PP 145
8.2.2 oY =4 o [o1 oy o Y=ot 4 V7= 1 IR PP 149
8.2.3 Causation and Correlation (Perspective 1)........cccueeeeeciieieeciee et e 153
8.2.4 Causation and Correlation (pPerspective 1)........cccueeeeecieeiieciie e e 157
8.2.5 Linear Model and IMatriCes........eieiueieiiieiiie ettt sttt sttt st s e esnee e 161
8.2.6 CompleX Problem SOIVING.......coo ittt e e e 165
8.2.7 Argumentation, Data Visualization and Communication (perspective I).........ccccccuveeennns 169
8.2.8 Argumentation, Data Visualization and Communication (perspective Il)...........ccee....... 173
8.2.9 Agency, Leadership, and Accountability.......coocccviieiieiiiccce e 177
8.2.1 CommuUNity IMPACt ProjJECE....cuiiiiiiiiiiiiiiiieiiieieiereerere e e ee e eeeeseeeesesassssseees 181

8.3 Languages and Humanities ModUIESccoviiieiiiiiie et 184
8.3.1] o T U= = <L U U P TP PP 184
8.3.2 HUMANITIES oot e s e s et e e s enneeenas 184
8.33 Introduction to Visual CUITUIEc.eiiiiiiiii et 184
8.3.4 Introduction to the Philosophy of SCIENCE ...ccuvviiiiiieee e 188
8.3.5 Introduction to Philosophical EXhiCS........cueeiiiiiiiiiiiiie e e 192
PV o] o1y T [GO 196

9.1 Intended Learning Outcomes AssessmMent-MatriX.......cccceeeecieeeiciieee s e e 196

1 Program Overview

1.1 Concept

1.1.1 The Constructor University Educational Concept

Constructor University aims to educate students for both an academic and a professional career by
emphasizing three core objectives: academic excellence, personal development, and employability to
succeed in the working world. Constructor University offers an excellent research driven education
experience across disciplines to prepare students for graduate education as well as career success by
combining disciplinary depth and interdisciplinary breadth with supplemental skills education and
extra-curricular elements. Through a multi-disciplinary, wholistic approach and exposure to cutting-
edge technologies and challenges, Constructor University develops and enables the academic
excellence, intellectual competences, societal engagement, professional and scientific skills of
tomorrows leaders for a sustainable and peaceful future.

In this context, it is Constructor University’s aim to educate talented young people from all over the
world, regardless of nationality, religion, and material circumstances, to become citizens of the world
who are able to take responsible roles for the democratic, peaceful, and sustainable development of
the societies in which they live. This is achieved through a high-quality teaching as well as manageable
study loads and supportive study conditions. Study programs and related study abroad programs
convey academic knowledge as well as the ability to interact positively with other individuals and
groups in culturally diverse environments. The ability to succeed in the working world is a core
objective for all study programs at Constructor University, both in terms of actual disciplinary subject
matter and also to the social skills and intercultural competence. Study-program-specific modules and
additional specializations provide the necessary depth, interdisciplinary offerings and the minor option
provide breadth while the university-wide general foundation and methods modules, optional German
language and Humanity modules, and an extended internship period strengthen the employability of
students. The concept of living and learning together on an international campus with many cultural
and social activities supplements students’ education. In addition, Constructor University offers
professional advising and counseling.

Constructor University’s educational concept is highly regarded both nationally and internationally.
While the university has consistently achieved top marks over the last decade in Germany’s most
comprehensive and detailed university ranking by the Center for Higher Education (CHE), it has also
been listed by one of the most widely observed university rankings, the Times Higher Education (THE)
ranking. More details on the current ranking positions can be found at
https://constructor.university/more/about-us.

1.1.2 Program Concept

Software, Data and Technology are at the forefront of modern industries and play a major role in most
areas of science and technology. The field is constantly evolving, but the fundamental principles
underlying these technologies have now developed into a mature discipline. The BSc Software, Data
and Technology program at Constructor University focuses on the understanding of these principles
and their application in practice.

Students will obtain core software, data and technology competencies and skills (e.g., programming,
data analysis, and machine learning) and they will learn about fundamental abstractions and abstract
6

https://constructor.university/more/about-us

notions of software, data and technology (e.g., data structures, algorithms, and software design
principles). They will learn about the principles behind and the proper usage of core technologies (e.g.,
databases, parallel programming, compilers, and data analysis). Finally, students will develop an
understanding of the limitations of technology and side effects of software, data and technology
systems (e.g., security, privacy, and ethical aspects).

Because software, data and technology are rooted in mathematics and computer science, students
will take mathematical and computer science methods modules covering calculus, linear algebra,
probability theory, statistics, and numerical methods or discrete mathematics.

The job market for computer scientists has been very favorable in the last few years, and there is no
indication that this will change in the near future. Because of the rapid changes in the field, it is
important to focus the education on the fundamental principles, as well as, subfields of promising
future relevance. Cross-disciplinary breadth and flexibility, as well as social and work organization skills
are increasingly important. The program offers a major option in Software, Data and Technology
designed for students who plan to work in the information technology industry or join graduate
programs related to the discipline.

In summary, the BSc Software, Data and Technology program at Constructor University is designed to
provide students with the foundational knowledge, skills and understanding of the principles and
application of software, data and technology in modern industries. With an emphasis on cross-
disciplinary breadth and flexibility, students will be well-prepared for a wide range of career
opportunities in the field.

1.2 Specific Advantages of Software, Data and Technology at Constructor University

The Software, Data and Technology program at Constructor University aims to provide students with
a comprehensive and rigorous education in the foundations of software, data and technology, while
also keeping the curriculum contemporary and internationally oriented.

e The program will focus on relating the theoretical concepts to their practical application in
industry and research, with instructors incorporating recent developments and trends in the
field to demonstrate how basic methods and techniques are being used today.

e Early involvement in research projects will be an integral aspect of the program, providing
students with the opportunity to gain hands-on experience and potentially develop
interdisciplinary collaborations.

o The program will be constantly fine-tuned through direct and open dialogue with students and
alumni, ensuring that the curriculum meets their specific needs and prepares them for
internships and job opportunities.

e One of the specific advantages of the program is its carefully designed curriculum with a
diverse range of course offerings, providing students with a well-rounded understanding of
the field and preparing them for various career paths. The program covers foundational
subjects such as Linear Algebra, Analysis, Programming in C and C++, Core and Advanced
Algorithms & Data Structures, as well as more specialized subjects. These courses are
structured to ensure a progressive learning experience, with advanced modules building on
the knowledge acquired in earlier modules.

e |n addition to the core curriculum, the program also offers three specialized tracks: Machine
Learning, Software Development, and Programming Languages. These specialized tracks
7

provide students with the opportunity to delve deeper into specific areas of interest and gain
expertise in their chosen field. The Machine Learning specialization, for example, offers
additional courses such as Optimization Methods, Stochastic Modeling and Financial
Mathematics, Deep Learning, and NLP. The Software Development specialization includes
courses such as Databases Internals, Integrated Development and IT Operations, Software
Design, Parallel Programming, and Distributed Algorithms, while the Programming Languages
specialization includes Formal Languages and Parsers, Compilers, and Semantics of
Programming Languages.

The close ties and support and participation of JetBrains in the development of the program will
provide students with unique opportunities for project work, internships, and access to special
courses, as well as the chance to receive scholarships covering tuition, boarding, insurance, and a
monthly allowance.

1.3 Program-Specific Educational Aims

1.3.1 Qualification Aims

The main subject-specific qualification aim of the BSc Software, Data and Technology program at
Constructor University is to enable students to take up qualified employment in modern industries
involving software, data and technology or to enter graduate programs related to these fields.
Graduates of the program will have the following competencies:

e Software, Data and Technology competence

Graduates will be familiar with the theoretical foundations of software, data and technology and will
be able to design and develop systems addressing a given application scenario. They will be able to
analyze and structure complex problems and will be able to address them using program specific
methods. Graduates will be able to construct and maintain complex systems using a structured,
analytic, and creative approach.

e Communication competence

Graduates will be able to communicate subject-specific topics convincingly in both spoken and written
form to fellow data scientists, software developers, or customers.

e Teamwork and project management competence
Graduates will be able to work effectively in a team and will be able to organize workflows in complex
development efforts. They will be familiar with tools that support the development, testing, and
maintenance of large systems and will be able to take design decisions in a constructive way.

e Learning competence

Graduates will have acquired a solid foundation enabling them to assess their own knowledge and
skills, learn effectively, and remain up to date with the latest developments in the rapidly evolving
fields of software, data and technology.

e Personal and professional competence

Graduates will be able to develop a professional profile, justify professional decisions based on
theoretical and methodical knowledge, and critically reflect on their behavior with respect to their
consequences for society. Additionally, the program being developed with the support and

8

participation of JetBrains will provide students with the opportunity for project work and internships
in the company.

1.3.2

Intended Learning Outcomes

By the end of the BSc Software, Data and Technology program, students will be able to

1.

10.

11.

12.

13.

14.

15.

work professionally in the field of software, data and technology and enter graduate programs
related to these fields;

apply fundamental concepts of mathematics, statistics, and computer science while solving
data-related problems;

analyze at multiple levels of abstraction and use appropriate mathematical and computational
methods to model and analyze real-world problems;

develop, analyze and implement algorithms using modern software engineering methods and
programming languages;

understand the characteristics of a range of computing platforms and their advantages and
limitations;

choose from multiple programming paradigms, languages and algorithms to solve a given
problem adequately;

apply the necessary mathematical methods, such as linear algebra, analysis, calculus, and
discrete mathematics;

recognize the context in which data science and software systems operate, including
interactions with people and the physical world;

describe the state of published knowledge in the field of software, data and technology and in
a chosen specialization (Machine Learning, Software Development, Programming Languages);

analyze and model real-life scenarios in organizations and industries using contemporary
techniques of data science and software development, also taking methods and insights of
other disciplines into account;

appropriately communicate solutions of problems in software, data and technology in both
spoken and written form to specialists and non-specialists;

draw scientifically founded conclusions that consider social, professional, scientific, and ethical
aspects;

work effectively in a diverse team and take responsibility in a team;

take responsibility for their own learning, personal and professional development and role in
society, reflecting on their practice and evaluating critical feedback;

adhere to and defend ethical, scientific, and professional standards.

1.4 Career Options and Support

The Software, Data and Technology program at Constructor University offers students a wide range of
career opportunities in the rapidly growing fields of computer science. As two of the key disciplines of

9

the 21st century, software, data and technology affect almost all modern industries, making the job
market highly favorable for graduates with a degree in this field. The program equips students with
the skills and knowledge necessary to excel in various roles such as data scientist, data analyst,
software engineer, full-stack developer, information systems manager, database administrator,
application developer, machine learning engineer, IT consultant, and system analyst.

In addition to the broad range of career options available to graduates, the program also boasts strong
industry partnerships with companies such as JetBrains, Acronis, Alemira, Virtuozzo, Rolos, and others.
These partnerships provide students with valuable opportunities for internships, networking, and
career development.

The Career Service Center (CSC) helps students in their career development. It provides students with
high-quality training and coaching in CV creation, cover letter formulation, interview preparation,
effective presenting, business etiquette, and employer research as well as in many other aspects, thus
helping students identify and follow up on rewarding careers after graduating from Constructor
University. Furthermore, the Alumni Office helps students establish a long-lasting and global network
which is useful when exploring job options in academia, industry, and elsewhere.

1.5 Admission Requirements

Admission to Constructor University is selective and based on a candidate’s school and/or university
achievements, recommendations, self-presentation, and performance on standardized tests. Students
admitted to Constructor University demonstrate exceptional academic achievements, intellectual
creativity, and the desire and motivation to make a difference in the world.

The following documents need to be submitted with the application:

e Recommendation Letter (optional)

e Official or certified copies of high school/university transcripts

e Educational History Form

e Standardized test results (SAT/ACT) if applicable

e Motivation statement

e ZeeMee electronic resume (optional)

e Language proficiency test results (TOEFL Score: 90, IELTS: Level 6.5 or equivalent)

Formal admission requirements are subject to higher education law and are outlined in the Admission
and Enrollment Policy of Constructor University.

For more detailed information about the admission visit: https://constructor.university/admission-
aid/application-information-undergraduate

10

https://constructor.university/admission-aid/application-information-undergraduate
https://constructor.university/admission-aid/application-information-undergraduate

1.6 More information and contacts

For more information on the study program, please contact the Study Program Coordinator:

Prof. Dr. Alexander Omelchenko
Professor of Applied Mathematics, Data Science and Computing

Email: aomelchenko@constructor.university

or visit our program website: https://constructor.university/programs/undergraduate-
education/data-science-software-development

For more information on Student Services please visit:

https://constructor.university/student-life/student-services

11

https://constructoruniversity.sharepoint.com/sites/Proj.ProgramHandbooks/Shared%20Documents/10%20Data%20Science%20and%20Software%20Development%20BSc_MSc/2023/BSc%20Software,%20Data%20and%20Technology/aomelchenko@constructor.university
https://constructor.university/programs/undergraduate-education/data-science-software-development
https://constructor.university/programs/undergraduate-education/data-science-software-development
https://constructor.university/student-life/student-services

2 The Curricular Structure

2.1 General

The curricular structure provides multiple elements for enhancing employability, interdisciplinarity,
and internationality. The unique CONSTRUCTOR Track, offered across all undergraduate study
programs, provides comprehensive tailor-made modules designed to achieve and foster career
competency. Additionally, a mandatory internship of at least two months after the second year of
study and the possibility to study abroad for one semester give students the opportunity to gain insight
into the professional world, apply their intercultural competences and reflect on their roles and
ambitions for employment and in a globalized society.

All undergraduate programs at Constructor University are based on a coherently modularized
structure, which provides students with an extensive and flexible choice of study plans to meet the
educational aims of their major as well as minor study interests and complete their studies within the
regular period.

The framework policies and procedures regulating undergraduate study programs at Constructor
University can be found on the website (https://constructor.university/student-life/student-
services/university-policies).

2.2 The Constructor University 4C Model

Constructor University offers study programs that comply with the regulations of the European Higher
Education Area. All study programs are structured according to the European Credit Transfer System
(ECTS), which facilitates credit transfer between academic institutions. The three-year undergraduate
programs involve six semesters of study with a total of 180 ECTS credit points (CP). The undergraduate
curricular structure follows an innovative and student-centered modularization scheme - the 4C
Model. It groups the disciplinary content of the study program in three overarching themes, CHOICE-
CORE-CAREER according to the year of study, while the university-wide CONSTRUCTOR Track is
dedicated to multidisciplinary content dedicated to methods as well as intellectual skills and is
integrated across all three years of study. The default module size is 5 CP, with smaller 2.5 CP modules
being possible as justified exceptions, e.g. if the learning goals are more suitable for 2.5 CP and the
overall student workload is balanced.

4C Curriculum

CHOICE CORE CAREER

Students have the CHOICE Students study the CORE Students enhance their CAREER
to decide on their major elements of their major and skills and prepare for the job market,
after the first year. may choose a minor. graduate school and society.

Year 1-3

> CONSTRUCTOR Track

CONSTRUCTOR Track teaches multidisciplinary skills, competences and methods
and is integrated across all three years of study.

Figure 1: The Constructor University 4C-Model

12

https://constructor.university/student-life/student-services/university-policies
https://constructor.university/student-life/student-services/university-policies

2.2.1 Year1-CHOICE

The first study year is characterized by a university-specific offering of disciplinary education that builds
on and expands upon the students’ entrance qualifications. Students select introductory modules for
a total of 45 CP from the CHOICE area of a variety of study programs, of which 15-45 CP will be from
their intended major. A unique feature of our curriculum structure allows students to select their major
freely upon entering Constructor University. The team of Academic Advising Services offers curriculum
counseling to all Bachelor students independently of their major, while Academic Advisors, in their
capacity as contact persons from the faculty, support students individually in deciding on their major
study program.

To pursue a SDT major, the following CHOICE modules (30 CP) need to be taken as mandatory (m)
modules during the first year of study:

e CHOICE Module: Programming in C and C++ (m, 7.5 CP)

e CHOICE Module: Industrial Programming with Python (m, 7.5 CP)
e CHOICE Module: Core Algorithms and Data Structures (m, 7.5 CP)
e CHOICE Module: Development in JVM Languages (m, 7.5 CP)

The remaining two own CHOICE modules (15 CP) can be selected in the first year of study according to
interest and/or with the aim of pursuing a minor or allowing a change of major up until the beginning
of the second semester or after the first year, when the major becomes fixed. For students not
pursuing a minor the following modules are recommended in the first and second semesters:

e CHOICE module: Analysis (me, 7.5 CP) or Mathematical Foundations of Computer Science (me,
7.5 CP)

e CHOICE module: Linear Algebra (me, 7.5 CP) or Digital Systems and Computer Architecture
(me, 7.5 CP)

In total, the first-year modules lay the foundation for the second year of education within the SDT
major.

Students can still change to another major at the beginning of their second year of studies, provided
they have taken the corresponding mandatory CHOICE modules in their first year of studies. All
students must participate in an entry advising session with their Academic Advisors to learn about their
major change options and consult their Academic Advisor prior to changing their major.

Students that would like to retain a further option are strongly recommended to additionally register
for the CHOICE modules of one of the following study programs in their first year:

e Computer Science (CS)
CHOICE Module: Programming in C and C++ (7.5 CP)
CHOICE Module: Algorithms and Data Structures (7.5 CP)
CHOICE Module: Mathematical Foundations of Computer Science (7.5 CP)
CHOICE Module: Digital Systems and Computer Architecture (7.5 CP)

e International Relations: Politics and History (IRPH)
CHOICE Module: Introduction to International Relations Theory (m, 7.5 CP)

13

CHOICE Module: Introduction to Modern European History (m, 7.5 CP)

e Integrated Social and Cognitive Psychology (ISCP)
CHOICE Module: Essentials of Cognitive Psychology (m, 7.5 CP)
CHOICE Module: Essentials of Social Psychology (m, 7.5 CP)

To allow further major changes after the first semester the students are strongly recommended to
register for the CHOICE modules of one of the following study programs:

e Physics and Data Science (PHDS)
CHOICE Module: Classical Physics (m, 7.5 CP)
CHOICE Module: Scientific Programming with Python (m, 7.5 CP)
CHOICE Module: Modern Physics (m, 7.5 CP)
CHOICE Module: Mathematical Modeling (m, 7.5 CP)

e Mathematics, Modeling and Data Analytics (MMDA)
CHOICE Module: Analysis (m, 7.5 CP)
CHOICE Module: Scientific Programming with Python (m, 7.5 CP)
CHOICE Module: Linear Algebra (m, 7.5 CP)
CHOICE Module: Mathematical Modelling (m, 7.5 CP)

e Robotics and Intelligent Systems (RIS)
CHOICE Module: Programming in C and C++ (m, 7.5 CP)
CHOICE Module: Digital Systems and Computer Architecture (m, 7.5 CP)
CHOICE Module: General Electrical Engineering | (m, 7.5 CP)
CHOICE Module: Algorithms and Data Structures (m, 7.5 CP)

The module descriptions can be found in the respective Study Program Handbook.

2.2.2 Year 2-CORE

In their second year, students take a total of 45 CP from a selection of in-depth, discipline-specific CORE
modules. Building on the introductory CHOICE modules and applying the methods and skills acquired
thus far (see 2.3.1), these modules aim to expand students’ critical understanding of the key theories,
principles, and methods in their major for the current state of knowledge and best practice.

To pursue SDT as a major, the following mandatory (m) CORE modules (25 CP) must be taken:
e CORE Module: Operating Systems (m, 7.5 CP)
e CORE Module: Software Engineering and Design (m, 7.5 CP)
e CORE Module: Advanced Algorithms and Data Structures (m, 5 CP)
e CORE Module: Machine Learning (m, 5 CP)

Furthermore, students who are not pursuing a minor should take the following mandatory elective
(me) modules:

e CORE Module: Functional Programming (me, 5 CP)

e CORE Module: Scientific Data Analysis (me, 5 CP)

e CORE Module: Database Fundamentals (me, 5 CP)
14

e CORE Module: Discrete Mathematics (me, 5 CP) OR Artificial Intelligence (me, 5 CP)

Minor Option

SDT students can take CORE modules (or more advanced Specialization modules) from a second
discipline, which allows them to incorporate a minor study track into their undergraduate education,
within the 180 CP required for a bachelor’s degree. The educational aims of a minor are to broaden
the students’ knowledge and skills, support the critical reflection of statements in complex contexts,
foster an interdisciplinary approach to problem-solving, and to develop an individual academic and
professional profile in line with students’ strengths and interests. This extra qualification will be
highlighted in a student’s final transcript.

The Academic Advising Coordinator, Academic Advisor, and the Study Program Chair of the minor
study program support students in the realization of their minor selection; the consultation with the
Academic Advisor is mandatory when choosing a minor.

As a rule, this requires SDT students to substitute the CORE modules "Databases Fundamentals",
"Functional Programming”, “Scientific Data Analysis" and “Discrete Mathematics OR Artificial
Intelligence” in the second year (15 CP total) with the default minor CORE modules of the minor study
program.

The requirements for the specific minors are described in the handbook of the study program offering
the minor and are marked in the respective Study and Examination Plans. For an overview of accessible
minors, please check the Major/Minor Combination Matrix, which is published at the beginning of each
academic year.

2.2.3 Year 3-CAREER

During their third year, students prepare and make decisions about their career path after graduation.
To explore available choices and to gain professional experience, students undertake a mandatory
summer internship. The third year of studies allows SDT students to take Specialization modules within
their discipline, but also focuses on the responsibility of students beyond their discipline (see
CONSTRUCTOR Track).

The fifth semester also opens a mobility window for a diverse range of study abroad options. Finally,
the sixth semester is dedicated to fostering the students’ research experience by involving them in an
extended Bachelor thesis project.

Internship / Start-up and Career Skills Module

As a core element of Constructor University’s employability approach students are required to engage
in a mandatory two-month internship of 15 CP that will usually be completed during the summer
between the second and third years of study. This gives students the opportunity to gain first-hand
practical experience in a professional environment, apply their knowledge and understanding in a
professional context, reflect on the relevance of their major to employment and society, reflect on
their own role in employment and society, and find a professional orientation. The internship can also
establish valuable contacts for the students’ Bachelor’s thesis project, for the selection of a Master
program graduate school or further employment after graduation. This module is complemented by
career advising and several career skills workshops throughout all six semesters that prepare students
for the transition from student life to professional life. As an alternative to the full-time internship,
students interested in setting up their own company can apply for a start-up option to focus on
developing of their business plans.
15

For further information, please contact the Career Service Center (CSC)
(https://constructor.university/student-life/career-services).

Specialization Modules

In the third year of their studies, students take 15 CP from major-specific or major-related, advanced
Specialization Modules to consolidate their knowledge and to be exposed to state-of-the-art research
in the areas of their interest. This curricular component is offered as a portfolio of modules, from which
students can make free selections within a track during their fifth and sixth semester. The three
specialization tracks are: Data Science, Software Development and Programming languages. The
default Specialization Module size is 5 CP, with smaller 2.5 CP modules being possible as justified
exceptions.

To pursue SDT as a major, 15 CP from the following major-specific Specialization modules within one
track need to be taken:

Data Science track:

e SDT Specialization: Optimization Methods (me, 5 CP)

e SDT Specialization: Stochastic Modeling and Financial Mathematics (me, 5 CP)
e MSc CSSE CORE: Deep Learning (me, 5 CP)

e SDT Specialization: Natural Language Processing (me, 5 CP)

Software Development track:

e SDT Specialization: Databases Internals (me, 5 CP)

e SDT Specialization: Integrated Development and IT Operations (me, 5 CP)
e SDT Specialization: Parallel Programming (me, 5 CP)

e (S Specialization: Distributed Algorithms (me, 5 CP)

e (CS CORE: Computer Networks (me, 5 CP)

Programming Languages track:

e SDT Specialization: Formal Languages and Parsers (me, 5 CP)
e SDT Specialization: Compilers (me, 5 CP)
e SDT Specialization: Semantics of Programming Languages (me, 5 CP)

e SDT Specialization: Advanced Discrete Mathematics (me, 5 CP)

Specialization modules are designed to allow an SDT student to become more focused on a particular
subject of their choice within the SDT program or an affiliated program. The intention is to
simultaneously support their personal development and career choices.

16

https://constructor.university/student-life/career-services

Study Abroad

Students have the opportunity to study abroad for a semester to extend their knowledge and abilities,
broaden their horizons and reflect on their values and behavior in a different context as well as on
their role in a global society. For a semester abroad (usually the 5th semester), modules related to the
major with a workload equivalent to 22.5 CP must be completed. Modules recognized as study abroad
CP need to be pre-approved according to Constructor University study abroad procedures. Several
exchange programs allow students to directly enroll at prestigious partner institutions worldwide.
Constructor University’s participation in Erasmus+, the European Union’s exchange program, provides
an exchange semester at a number of European universities that include Erasmus study abroad
funding.

For further information, please contact the International Office (https://constructor.university/
student-life/study-abroad/international-office).

SDT students that wish to pursue a study abroad in their fifth semester are required to select their
modules at the study abroad partners such that they can be used to substitute between 10-15 CP of
major-specific Specialization modules and between 5-15 CP of modules equivalent to the non-
disciplinary New Skills modules (see CONSTRUCTOR Track). In their sixth semester, according to the
study plan, returning study-abroad students complete the Bachelor Thesis/Seminar module (see next
section), they take any missing Specialization modules to reach the required 15 CP in this area, and
they take any missing New Skills modules to reach 15 CP in this area.

Bachelor Thesis/Seminar Module

This module is a mandatory graduation requirement for all undergraduate students. It consists of two
module components in the major study program guided by a Constructor University faculty member:
the Bachelor Thesis (12 CP) and a Seminar (3 CP). The title of the thesis will appear on the students’
transcripts.

Within this module, students apply the knowledge skills, and methods they have acquired in their
major discipline to become acquainted with actual research topics, ranging from the identification of
suitable (short-term) research projects, preparatory literature searches, the realization of discipline-
specific research, and the documentation, discussion, and interpretation of the results.

With their Bachelor Thesis students demonstrate mastery of the contents and methods of their major-
specific research field. Furthermore, students show the ability to analyze and solve a well-defined
problem with scientific approaches, a critical reflection of the status quo in scientific literature, and
the original development of their own ideas. With the permission of a Constructor University Faculty
Supervisor, the Bachelor Thesis can also have an interdisciplinary nature. In the seminar, students
present and discuss their theses in a course environment and reflect on their theoretical or
experimental approach and conduct. They learn to present their chosen research topics concisely and
comprehensively in front of an audience and to explain their methods, solutions, and results to both
specialists and non-specialists.

2.3 The CONSTRUCTOR Track

The CONSTRUCTOR Track is another important feature of Constructor University’s educational model.
The CONSTRUCTOR Track runs parallel to the disciplinary CHOICE, CORE, and CAREER modules across
all study years and is an integral part of almost all undergraduate study programs. It reflects a

17

https://constructor.university/%20student-life/study-abroad/international-office
https://constructor.university/%20student-life/study-abroad/international-office

university-wide commitment to help transform late-stage adolescents into confident, competent and
responsible young adults by providing an intellectual tool kit to become life-long learners and by giving
them the capacity to employ a range of methodologies to approach potential solutions to problems
across disciplines. The CONSTRUCTOR track contains Methods, New Skills and German
Language/Humanities modules.

2.3.1 Methods Modules

Methods such as mathematics, statistics, programming, data handling, presentation skills, academic
writing, and scientific and experimental skills are offered to all students as part of the Methods area in
their curriculum. The modules that are specifically assigned to each study program equip students with
transferable academic skills. They convey and practice specific methods that are indispensable for each
students’ chosen study program. Students are required to take 20 CP in the Methods area. The size of
all Methods modules is 5 CP.

To pursue Software, Data and Technology as a major, the following Methods modules (20 CP) need to
be taken as mandatory modules:

o Methods Module: Elements of Linear Algebra (me, 5 CP)

. Methods Module: Elements of Calculus (me, 5 CP)

. Methods Module: Probability and Random Processes (m, 5 CP)
. Methods Module: Statistics and Data Analytics (m, 5 CP)

Students who have a strong mathematical background can also choose Matrix Algebra and Advanced
Calculus I and Il (me, 5 CP each) instead of Elements of Linear Algebra and Elements of Calculus.

2.3.2 New Skills Modules

This part of the curriculum constitutes the intellectual and conceptual tool kit, and is designed to
cultivate and nurture the capacity for a particular set of intellectual dispositions — curiosity,
imagination, critical thought, transferability — as well as a range of individual and societal capacities —
self-reflection, argumentation and communication — and to introduce students to the normative
aspects of inquiry and research — including the norms governing sourcing, sharing, withholding
materials and research results as well as others governing the responsibilities of expertise as well as
the professional point of view.

All students are required to take the following modules in their second year:

e New Skills Module: Logic (m, 2.5 CP)
e New Skills Module: Causation and Correlation (m, 2.5 CP)

These modules will be offered with two different perspectives from which the students can choose.

The module perspectives are independent modules which examine the topic from different points of
view. Please see the module description for more details.

18

In the third year, students take three 5 CP modules that build upon previous modules in the track and
are partially constituted by modules that are more closely linked to each student’s disciplinary field of
study. The following module is mandatory for all students:

o New Skills Module: Argumentation, Data Visualization and Communication (m, 5 CP)

This module will also be offered with two different perspectives of which the students can choose.

In their fifth semester, students may choose between:

e New Skills Module: Linear Model/Matrices (me, 5 CP) and

e New Skills Module: Complex Problem Solving (me, 5 CP).

The sixth semester also contains the choice between two modules, namely:

e New Skills Module: Agency, Leadership and Accountability (me, 5 CP) and

e New Skills Module: Community Impact Project (me, 5 CP).

Students who study abroad during the fifth semester and are not substituting the mandatory
Argumentation, Data Visualization and Communication module, are required to take this module
during their sixth semester. Students who remain on campus are free to take the Argumentation, Data
Visualization and Communication module in person in either the fifth or sixth semester as they prefer.

2.3.3 German Language and Humanities Modules

German language abilities foster students’ intercultural awareness and enhance their employability in
their host country. They are also beneficial for securing mandatory internships (between the 2nd and
3rd year) in German companies and academic institutions. Constructor University supports its students
in acquiring basic as well as advanced German skills in the first year of the Constructor Track. Non-
native speakers of German are encouraged to take 2 German modules (2.5 CP each), but are not
obliged to do so. Native speakers and other students not taking advantage of this offering
take alternative modules in Humanities in each of the first two semesters:

e Humanities Module: Introduction to Philosophical Ethics (me, 2.5 CP)
e Humanities Module: Introduction to the Philosophy of Science (me, 2.5 CP)

e Humanities Module: Introduction to Visual Culture (me, 2.5 CP)

19

3 Software Development as a minor

3.1 AQualification Aims

Students obtaining a Minor in Software Development will gain a foundational understanding of key
principles and practices in computer science and data science. They will learn programming languages
such as Python and C++, core algorithms and data structures, computer architecture, advanced
algorithms, and machine learning. Upon completion of the minor, students will have acquired
sufficient knowledge to effectively collaborate with professionals in the fields of computer science and
data science. They will be able to apply their knowledge and skills to drive digitalization processes and
develop efficient solutions for problems in their domain. Students majoring in a technical discipline
can obtain this minor to complement their skills and deepen their understanding of software and
hardware components. The minor will prepare students to work in a variety of industries and sectors,
where they can leverage their knowledge to analyze data, design software systems, and develop
innovative solutions to complex problems.

3.2 Intended Learning Outcomes

With a minor in Software Development, students will be able to

o apply key principles and practices in computer science and data science to design, develop,
and deploy software systems.

e analyze data, develop efficient algorithms, and apply machine learning techniques to solve
complex problems.

o work collaboratively with professionals in the fields of computer science and data science,
communicate effectively with stakeholders, and understand the technical aspects of a
solution.

e gain a deep understanding of programming languages such as Python and C++, core algorithms
and data structures, computer architecture, advanced algorithms, and machine learning.

e evaluate design choices and assess their impact on the efficiency and effectiveness of a
solution.

e prepare to workinavariety of industries and sectors, where they can leverage their knowledge
and skills to develop innovative solutions to complex problems.

3.3 Module Requirements

The following mandatory modules need to be taken in order to receive a minor:

e Programmingin C and C++ (m, 7,5 CP)

e Core Algorithms and Data Structures (m, 7,5 CP)
e Functional Programming (me, 5 CP)

e Scientific Data Analysis (me, 5 CP)

e Machine Learning (m, 5 CP)

20

3.4 Degree

After successful completion, the minor in Data Science and Software Design will be listed on the final
transcript under PROGRAM OF STUDY and BA/BSc — [name of the major] as “(Minor: Software
Development).”

4 Software, Data and Technology Undergraduate Program Regulations

4.1 Scope of these Regulations

The regulations in this handbook are valid for all students who entered the Software, Data and
Technology undergraduate program at Constructor University in Fall 2025. In case of conflict between
the regulations in this handbook and the general policies for Bachelor Studies, the latter apply (see
https://constructor.university/student-life/student-services/university-policies).

In exceptional cases, certain necessary deviations from the regulations of this study handbook might
occur during the course of study (e.g., change of the semester sequence, assessment type, or the
teaching mode of courses).

Updates to Study Program Handbooks are based on the policies approved by the Academic Senate on
substantial and nonsubstantial changes to study programs. Students are integrated in the decision-
making process through their respective committee representatives. All students affected by the
changes will be properly informed.

In general, Constructor University therefore reserves the right to change or modify the regulations of
the program handbook also after its publication at any time and in its sole discretion.

4.2 Examination Concept

According to the Policies for Bachelor and Master studies, modules generally carry at least five ECTS.
Each program ensures appropriate examination frequency and organization, justified in an
examination concept and regularly reviewed with student involvement.

Constructor University’s examination concept follows the principle of Constructive Alignment (Biggs
1996), ensuring that learning outcomes, activities, and assessments are consistently aligned: students
learn what is intended, and assessments both measure and shape learning. Where one assessment
cannot cover all Intended Learning Outcomes (ILOs) complementary forms could be used (e.g., written
exams plus lab reports). Module descriptions map ILOs to assessments.

In specific contexts, such as asynchronous online modules or courses emphasizing student
engagement, Module Achievements or other types of formative assessments may support
competence-oriented assessment.

Student feedback, embedded in the Quality Assurance System (QAS), systematically monitors
workload, competence orientation, and alignment of ILOs and assessments. Student surveys and
feedback are regulated in the Policy for student surveys and evaluations.

21

https://constructor.university/student-life/student-services/university-policies

4.3 Degree

Upon successful completion of the study program, students are awarded a Bachelor of Science degree
in Software, Data and Technology.

4.4 Graduation Requirements

In order to graduate, students need to obtain 180 CP. In addition, the following graduation
requirements apply:

Students need to complete all mandatory components of the program as indicated in the Study and
Examination Plan in Chapter 6 of this handbook.

22

5 Schematic Study Plan for Software, Data and Technology

Figure 2 schematically shows the sequence and types of modules required for the study program. A more detailed description, including the assessment types, is given in the
Study and Examination Plan in the following section.

C>ONSTRUCTOR

C>ONSTRUCTOR
UNIVERSITY
Software, Data and Technology (180 CP)

CHOICE / CORE / CAREER 2y 45 135 CP CONSTRUCTORTrack ,c »

Agency, Leadership &
i . A tability OR C i
Bachelor Thesis / Seminar ccounlr?u;:;gProjengumy
i Argumentation,
3rd m. 15¢P Summer Internship / Start-Up Data Visualization me, 5 CP
after 2nd year and
Year (year) Communication**) I
- - - N - R Linear Model/ Matrices OR
Specialization Specialization Specialization complex Problem Solving
CAREER me, 5CP me, 5 CP me, 5 CP m, 15 CP m, 5CP me, 5 CP
{
. . [Database Discrete Mathematics OR Software Engineering Statistics and Data Causation/
Machine Learning ! Fundamentals Artificial Intelligence and Design Analytics Correlation**
m,5CP | me, 5 CP me, 5 CP m 7.5 CP m, 5 CP me, 2.5 CP
1
1
Functional Scientific i| Advanced Algorithms and Data . Probability and Random .
Programming Data Analysis || Structures Operating Systems Prg:esses Logic™
me, 5 CP me 5CP| m, 5 CP m, 7.5 CP m, 5CP me, 2.5 CP|
1
5 f : Elements of Calculus Or German /
Core Algorithms and Data ; Development in JVM Own Selection Matrix Alg. & Adv. Humanities
Structures 1 Languages Calculus Il
m,75CP | m, 7.5 CP me, 7.5 CP m, 5 CP me, 2.5 CP
i - : : Elements of Linear Algebra German /
: Programming in C/C++ Industrial Programming with Own Selection Or Matrix Alg. & Adv. Humanities
' Python Calculus |
' m, 7.5 CP m, 7.5 CP me, 7.5 CP aleulusim 5¢CP me, 2.5 CP
1
1

Minor Option in
Software Development (30 CP)

CP: Credit Points

23

m: mandatory
me: mandatory elective

Study abroad Option in 5t
Semester (22.5 CP)

**Different module
perspectives available

6

Study and Examination Plan

24

Software, Data, and Technology BSc
Matriculation Fall 2025
Program-Specific Modules Type Assessment Period Status' Sem. ECTS I | Construtor Track Modules (General Education) Type Assessment Period Status' Sem. ECTS
Year 1 - CHOICE 45 15
Take the mandatory CHOICE unit (s) listed below, this is a requirement for the_SDT program.
Unit: Programming 15 Unit: Skills / Methods 10
CH-230 Module: P ing in C and C++ (Default minor) m 115 Unit: Methods 10
CH-230-A Programming in C and C++ Lecture Written examination Examination period s CTMS-MAT-24 Module: Elements of Linear Algebra me 1 5
Programming in C and C++ Tutorial Tutorial Program Code During the semester X CTMS-24 Elements of Linear Algebra Lecture Written period
Module: Industrial with Python m "1 775 CTMS-MAT-25 Module: Elements of Calculus me 2 5
Industrial Programming with Python Lecture Written examination Examination period 725 CTMS-25 Elements of Calculus Lecture Written period
Industrial Programming with Python Lab Lab Program Code During the semester 7 s Students who have a strong. ical background can also choose the following instead of CTMS-MAT-24 and CTMS-MAT-25:
in JVM Languages m 2 7 75 CTMS-MAT-22 Module: Matrix Algebra & Advanced Calculus [me 1 5
SDT-103-A Development in JVM Languages Lecture Written examination Examination period 725 CTMS-22 Matrix Algebra & Advanced Calculus | Lecture Written examination period
SDT-103-B Development in JVM Languages Tutorial Program Code During the semester 5 CTMS-MAT-23 Module: Matrix Algebra & Advanced Calculus IT me 2 5
Unit: Data Science T s CTMS-23 Matrix Algebra & Advanced Calculus 11 Lecture Written examination Examination period
SDT-102 Module: Core Algoriths & Data (Default minor) m 2 715
SDT-102-A Core Algorithms and Data Structures Lecture Written period 5 Unit: German Language and (choose one module for each 5
SDT-102-B Core Algorithms and Data Structures Lab Lab Program Code During the semester 725 One German Language course can be replaced by to German Culture & Society
Unit: Further CHOICE modules me. 715 CTLA- Module: Language 1 me 1 7 25
Students take two further CHOICE modules from those offered for all other study programs” if they intend to pursue a minor; in case of full major it is recommended to take two of the N
following modules Language 1 Seminar Various Various
CH-150 Module: Analysis me. 1 15 CTLA- Module: Language 2 me. 2 ! 25
CH-150-A Analysis Lecture Written period CTLA- Language 2 Seminar Various Various
CH-151 Module: Linear Algebra me 2 7 75 CTLA-GER-28 Module: Introduction to German Culture & Society me 4 ' 25
CH-I51-A Linear Algebra Lecture Written period CTLA-1028 Introduction to German Culture & Society Lecture Presentation & Written Examination During Semester & Examination Period
CH-233 Module: of Computer Science me 1 15 CTHU-HUM-001 Module: into Ethics me | 2 | 25
CH-233-A Mathematical Foundations of Computer Science Lecture i i s CTHU-001 into P Ethics Lecture (online) Written period
CH-233-B Mathematical Foundations of Computer Science- Tutorial Tutorial Written examination Examination period 25 CTHU-HUM-002 Module: to the Philosophy of Science me 1 25
CH-234 Module: Digital Systems and Computer Architecture me 2 715 CTHU-002 to the Philosophy of Science Lecture (online) Written period
CH-234-A Digital Systems and Computer Architecture Lecture Written examination Examination period b 5 CTHU-HUM-003 to Visual Culture me 2 25
CH-234-B Digital Systems and Computer Tutorial Tutorial 25 CTHU-003 Introduction to Visual Culture Lecture (online) Written examination Examination period
Year 2 - CORE 45
Take all units listed below
Unit: Software Development 30
C0-562 Module: Operating Systems m 3 "5
CO-562-A Operating Systems. Lecture Written period 15
SDT-204 Module: Software and Design m 4 715
SDT-204-A Software Engineering and Design Lecture Written examination Examination period 725 Unit: Methods 3410
Software Engineering and Design Project Project Program Code During the semester 5 CTMS-MAT-12 Module: Probability and Random Processes m 3 5
Module: Database Fundamentals me 4 5 CTMS-12 Probability and Random Processes Lecture Written period
Database Fundamentals Lecture Written examination Examination period 725 CTMS-MET-21 Module: Statistics and Data Analytics m 4 5
Database F Project Project Program Code During the semester 7 25 CTMS-21 Statistics and Data Analytics Lecture Written period
Students take two further CORE module from those offered for all other study programs” if they intend to pursue a minor; in case of full major take both of the following modules
SDT-202 Module: ional P (Default minor) me 5
SDT-202-A Functional Programming Lecture Written examination Examination period 725 Unit: New Skills 5
|SDT-202-B Functional P Tutorial Tutorial Program Code During the semester 7 25 Choose one of the two modules
CO-489 Module: Scientific Data Analysis (Default minor) me 3 5 CTNS-NSK-01 Modaule: Logic ive I) me 3 | 25
€0-489-A Scientific Data Analysis Lecture Portfolio assessment During the semester CTNS-01 Logic (perspective I) Lecture (online) Written period
Unit: Data Science m 15 CTNS-NSK-02 Module: Logic 11} me 3 7 25
Module: Advanced Algoriths and Data Structures m 3 5 CTNS-02 Logic 1) Lecture (online) Written period
Advanced Algoriths and Data Structures Lecture Written examination Examination period 7 2s Choose one of the two modules
Advanced Algoriths and Data Structures Tutorial Tutorial Program Code During the semester ¥ CTNS-NSK-03 Module: Causation and Cq i ive I) me 4 ' 25
Module: Machine Learning (Default minor) m 4 5 CTNS-03 Causation and Correlation (perspective 1) Lecture (online) Written period
CO-541-A Machine Learning Lecture Written period CTNS-NSK-04 Module: Causation and Cq 1n me 4 ' 25
Take one of the two modules listed below CTNS-04 Causation and Correlation (perspective IT) Lecture (online) Written period
CO-501 Module: Discrete me 4 5
CO-501-A Discrete Lecture Written period
CO-547 Module: Artificial me 4 5
CO-547-A Artificial Lecture Written period

Year 3 - CAREER 45
15
CA-INT-900 Module: Summer Internship / Startup and Career Skills m 4/5 15
CA-INT-900-0 Internship / Startup and Career Skills Internship Report or Business plan___ During the 5th semester Unit: New Skills 15
|SDT-400 Module: Bachelor Thesis and Seminar SDT m 6 15 Choose one of the two modules
SDT-400-T Thesis SDT Thesis Thesis 15th of May 12 CTNS-NSK-05 Module: Linear Model and Matrices me 5 g
SDT-400-S Thesis Seminar SDT Seminar Presentation During the semester 3 CTNS-05 Linear Model and Matrices Online Lecture Written period
Unit: Specialization (take a total 15 ECTS of specialization modules) 15 CTNS-NSK-06 Module: Complex Problem Solving me 5 5
Subunit: Machine Learning CTNS-06 Complex Problem Solving Online Lecture Written period
MCSSE-AI-01 Module: Deep Learning me 5 5 Choose one of the two modules
MCSSE-AI-01 Deep Learning Lecture Written E: period CTNS-NSK-07 Module: A Data Vi and C icati ive I) me 5/6 5]
CA-S-MMDA-803 Module: ic Modeling and Financial me 6 5 CTNS-07 r Data i and C i (perspective I) Online Lecture Written period S
CA-MMDA-803 hastic Modeling and Financial i Lecture Portfolio During the semester CTNS-NSK-08 Module: A Data Vi and C icati ive 1) me 5/6 5
SDT-301 Module: Optimization Methods me 5 5 CTNS-08 Argumentation, Data Visualization and Communication (perspective I1) Online Lecture Written examination Examination period 6
SDT-301-A Optimization Methods Lecture Written examination Examination period 2.5 Choose one of the two modules
SDT-301-B Optimization Methods Tutorial Tutorial Program Code During the semester 2.5 CTNS-NSK-09 Module: Agency, Leadership, and Accountability me 6 5
[sDT-305 Module: Natural Language Processing me 6 5 CTNS-09 Agency, Leadership, and Online Lecture Written period
SDT-305-A Natural Lan, e Pro i Lecture Written period CTNS-CIP-10 Module: Co Impact Project me 5/6 5
Subunit: Software Development CTNS-10 C Impact Project Project Project Examination period
SDT-302 Module: Internals me 5l 5]
SDT-302-A Databases Internals Lecture Written examination Examination period
SDT-306 Module: p and IT O me 6 5
SDT-306-A Integrated Development and IT Operations Lecture Written period
|SDT-303 Module: Parallel P i me 5 5
SDT-303-A Parallel Programming Lecture Written examination Examination period
CA-S-CS-803 Module: Distributed Algorithms me 6 5
CA-CS-803 Distributed Algorithms Lecture Written period
CO-564 Module: Computer Networks me 5 5
CO-564-A Computer Networks Lecture Written examination Examination period
Subunit Programming Languages
SDT-304 Module: Formal L and Parsers me 5 5]
F)”MA Formal Languages and Parsers Lecture Written examination Examination period 25
SDT-304-B Formal Languages and Parsers Tutorial Tutorial Program Code During the semester 2.
SDT-307 Module: Compilers me 6 5]
SDT-307-A Compilers Lecture Written examination Examination period 2.5
SDT-307-B Compilers Project Project Program Code During the semester 2.5
SDT-308 Module: ics of P ing L me 6 5
SDT-308-A Semantics of Programming Languages Lecture Written examination Examination period 25
SDT-308-B of P Languages Tutorial Tutorial Program Code During the semester 2.5
P)T-Joﬂ Module: Advanced Discrete Mathematics me S 5
SDT-309-A Advanced Discrete Lecture Written period 180
|Total ECTS

! Status (m = mandatory, me = mandatory elective)

2 For a full listing of all CHOICE / CORE / CAREER / Constructor Track modules please consult the CampusNet online catalogue and /or the study program handbooks.

* German native speakers will have alternatives to the language courses (in the field of Humanities). Humanities I and II are optional to all students, except for German native speakers.

25

7 Software, Data and Technology Modules

7.1.1 Programmingin C and C++

Module Name

Programming in C and C++

Module Code 2025-CH-230
Module ECTS 7.5
Program Owner 2025-CS-BSc

(Computer Science)

Module Coordinator

Dr. Kinga Lipskoch

Study Semester
Program Semester | Status
2025-CS-BSc 1 Mandatory
Computer Science
2025-ECE-BSc 1 Mandatory
Electrical and Computer Engineering
2025-Minor-CS-BSc 1 Mandatory
Minor Option CS
2025-Minor-RIS-BSc 1 Mandatory
Minor Option in RIS
2025-Minor-Software Development 1 Mandatory
Minor in Software Development
2025-RIS-BSc 1 Mandatory
Robotics and Intelligent Systems
2025-SDT-BSc 1 Mandatory
Software, Data and Technology
Student Workload
Exam Preparation | 20
Lecture | 35
Tutorial | 17
Independent Study | 115
Total Hours | 187
Module Components Number Type cp
Programming in C and C++ - Tutorial CH-230-B Tutorial 2.5
Programming in C and C++ CH-230-A Lecture 5

26

Module Description

This course offers an introduction to programming using the programming languages C and C++. After
a short overview of the program development cycle (editing, preprocessing, compiling, linking,
executing), the module presents the basics of C programming. Fundamental imperative programming
concepts such as variables, loops, and function calls are introduced in a hands-on manner. Afterwards,
basic data structures such as multidimensional arrays, structures, and pointers are introduced and
dynamically allocated multidimensional arrays and linked lists and trees are used for solving simple
practical problems. The relationships between pointers and arrays, pointers and structures, and
pointers and functions are described, and they are illustrated using examples that also introduce
recursive functions, file handling, and dynamic memory allocation.

The module then introduces basic concepts of object-oriented programming languages using the
programming language C++ in a hands-on manner. Concepts such as classes and objects, data
abstractions, and information hiding are introduced. C++ mechanisms for defining and using objects,
methods, and operators are introduced and the relevance of constructors, copy constructors, and
destructors for dynamically created objects is explained. Finally, concepts such as inheritance,
polymorphism, virtual functions, and overloading are introduced. The learned concepts are applied by
solving programming problems.

A single assessment type cannot sufficiently test all intended learning outcomes. The program code
evaluates programming / practical skills, whereas the written examination assesses understanding of
theoretical knowledge, core principles, and analytical reasoning.

Recommended Knowledge

It is recommended that students install a suitable programming environment on their notebooks. It is
recommended to install a Linux system such as Ubuntu, which comes with open-source compilers such
as gcc and g++ and editors such as vim or emacs. Alternatively, the open-source Code: Blocks
integrated development environment can be installed to solve programming problems

Usability and Relationship to other Modules

This module introduces the programming languages C and C++ and several other modules build on this
foundation. Certain features of C++ such as templates and generic data structures and an overview of
the standard template library will be covered in the Algorithms and Data Structures module.

Intended Learning Outcomes

No | Competence ILO

1 | Explain Explain basic concepts of imperative programming languages such
as variables, assignments, loops, and function calls.
2 | Write Write, test, and debug programs in the procedural programming

language C using basic C library functions.

3 | Demonstrate Demonstrate how to use pointers to create dynamically allocated
data structures such as linked lists.

4 | Explain Explain the relationship between pointers and arrays.

5 | lllustrate Illustrate basic object-oriented programming concepts such as
objects, classes, information hiding, and inheritance.

27

6 | Give Give original examples of function and operator overloading and
polymorphism.

7 | Write Write, test, and debug programs in the object-oriented
programming language C++.

Indicative Literature

e Bjarne Stroustrup: The C++ Programming Language, 4th edition, Addison Wesley, 2013.

e Brian Kernighan, Dennis Ritchie: The C Programming Language, 2nd edition, PrenticeHall
Professional Technical Reference, 1988.

e Bruce Eckel, Chuck Allison: Thinking in C++: Practical Programming, Prentice Hall, 2004.

e Bruce Eckel: Thinking in C++: Introduction to Standard C++, Prentice Hall, 2000.

e Michael Dawson: Beginning C++ Through Game Programming, 4th edition, Delmar Learning,
2014.

e Steve Oualline: Practical C Programming, 3rd edition, O'Reilly Media, 1997.

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Programming in Cand C++ | Program Code 33 45% All
- Tutorial Practical
ILOs
Programming in C and C++ | Written 120 67 45% All
Examination Minutes theoretic
al ILOs

Module Achievement

28

7.1.2 Industrial Programming with Python

Module Name Industrial Programming with Python
Module Code 2025-SDT-105
Module ECTS 7.5
Program Owner 2025-SDT-BSc

(Software, Data and Technology)
Module Coordinator Prof. Dr. Alexander Omelchenko
Study Semester
Program Semester | Status
2025-SDT-BSc 1 Mandatory

Software, Data and Technology

Student Workload
Lecture | 17.5
Tutorial | 35
Independent Study | 115
Exam Preparation | 20
Total Hours | 187.5
Module Components Number Type cp
Industrial Programming with Python SDT-105-A Lecture 2.5
Industrial Programming with Python | SDT-105-B Laboratory 5
Lab

Module Description

This module hones professional, production-level Python skills. Students master modern industrial
practices—version control, automated tooling, and clean architecture—so small scripts can evolve into
maintainable systems.

Topics:

- Python language basics introduction.

- Toolchain bootcamp: terminal workflows, Git, mypy, pytest

- Code style and clean code

- Design patterns and principles (SOLID, KISS, DRY)

- Testing and continuous integration: unit, property-based, coverage, GitHub Actions
- Asynchronous Python: async/await, asyncio tasks, concurrency patterns

- Networking and web APIs: HTTP/HTTPS, REST, micro-APIs with FastAPI

29

- Common data formats: CSV, XML, JSON, YAML

- Packaging and distribution

- Intro to data science: pandas/numpy for analytics

Interactive TA sessions dig into the technical details and provide hands-on practice.

Weekly homework with focused tasks cements each topic, while two to three larger projects integrate
the material in near real-world scenarios.

A single assessment type cannot sufficiently test all intended learning outcomes. The program code
evaluates practical skills, whereas the written examination assesses understanding of theoretical
knowledge, core principles, and analytical reasoning.

Recommended Knowledge

- Familiarity with basic programming constructs and prior Python or other modern language
experience is highly recommended.

- Configure a GitHub account and enable a student pack.

- Install the latest version of Python, Git, IDE/editor.

Usability and Relationship to other Modules

This module is an alternative to SDT-104 “Scientific Programming with Python” with a greater focus on

software craftsmanship and deployment rather than numerical computing. It provides essential
groundwork for

advanced topics such as Backend development, DevOps, and cloud computing.

Intended Learning Outcomes

No | Competence ILO

1 | Demonstrate Demonstrate knowledge of the Python language and its most
common standard libraries.

2 | Describe Describe the principles of clean code and common design patterns
and articulate how they contribute to code readability and
maintainability.

3 | Understand Understand the purpose and best practices of unit testing, and how
these tests contribute to software reliability.

4 | Demonstrate Demonstrate knowledge of asynchronous programming paradigms
in Python.

5 | Setup Set up and maintain a professional Python development
environment with automated type-checking and style enforcement.

6 | Implement Implement clean, idiomatic, and maintainable Python code using
modern external libraries.

7 | Develop Develop test suites to ensure code quality and correctness.

30

8 | Develop Develop asynchronous programs and network applications using
modern Python libraries.

9 | Work Work effectively in team-based development settings, using Git-
based workflows.
10 | Publish Package, version, and publish Python libraries or applications,

making them ready for distribution.

Indicative Literature

e Brian Okken — Python Testing with pytest

e Luciano Ramalho — Fluent Python

e Official PEP 8, PEP 20, and PEP 257 documents.
e Robert C. Martin — Clean Code

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Industrial Programming | Written 90 33 45% 1-4
with Python Examination minutes
Industrial Programming | Program Code 67 45% 5-10
with Python Lab

Module Achievement

> 50 % of weekly assignments must be passed. Late/missed work may be compensated by extra tasks
during the semester or an extra task in January.

31

7.1.3 Analysis

Module Name Analysis
Module Code 2025-CH-150
Module ECTS 7.5
Program Owner 2025-MMDA-BSc
(Mathematics, Modeling, and Data
Analytics)

Module Coordinator Prof. Dr. Séren Petrat
Study Semester
Program Semester | Status
2025-minor-Mathematics 1 Mandatory

Minor in Mathematics
2025-MMDA-BSc 1 Mandatory

Mathematics, Modeling, and Data Analytics
2025-SDT-BSc 1 Mandatory

Software, Data and Technology Elective
Student Workload

Lecture | 35
Tutorial | 17.5
Independent Study | 135
Total Hours | 187.5

Module Components Number Type cp
Analysis CH-150-A Lecture 7.5

Module Description

This module introduces fundamental concepts and techniques in a concise and rigorous way. The class
conveys the pleasure of doing mathematics, and motivates mathematics concepts from problems and
concrete examples, but also shows the power of abstraction and of formal reasoning.

The following topics will be covered:

- Proof by induction, and elementary combinatorics

- Groups, equivalence relations, and quotients

- Natural numbers, integers, rationals, and real numbers

- Sequences and series, and convergence

- Functions of a single real variable, continuity, and the intermediate value theorem

- Metric spaces, and the continuous functions as a metric space

32

- Differentiation, mean value theorem, and the inverse mapping theorem in one variable

- Riemann integral

- Fundamental theorem of Calculus, and the integration by parts with applications

- Integral mean value theorem

- Change of variables

- Taylor series with integral and Lagrange remainders

- Elementary point-set topology (neighborhoods, open and closed sets, compactness, and Heine-Borel)

Usability and Relationship to other Modules

- This module is part of the core education in Mathematics, Modeling and Data Analytics.

- It is also valuable for students in Physics, Computer Science, RIS, and ECE, either as part of a minor in
Mathematics, or as an elective module.

- The curriculum is integrated with the curriculum of the module "Matrix Algebra and Advanced
Calculus" in the following way: "Matrix Algebra and Advanced Calculus" emphasizes the operational
aspects, computational skills, and intuitive understanding, while Analysis builds rigorous foundations
of the field, emphasizing proof, abstraction, and mathematical rigor.

Recommended Knowledge

- Good command of high-school mathematics, in particular pre-calculus topics

- Good command of high-school calculus helps, but is not a prerequisite

- It is recommended to co-enroll in the Methods module “Matrix Algebra & Advanced Calculus I”

- Revise your high school mathematics

- Read general interest expositions about mathematics and mathematicians

- Work on mathematics problems over the summer

- For a detailed set of preparation instruction, references, and links, see http://math.Constructor-
university.de/undergraduate/prepare/index

Intended Learning Outcomes

No | Competence ILO
1 | Formulate Formulate mathematical concepts and results discussed in class
cleanly.
2 | Outline Outline proofs which have been given in the lectures.
3 | Prove Prove results independently which are direct consequences of those
proved in the lectures.
4 | Understand Understand and use fundamental mathematical terminology to

communicate mathematics at a university level.

33

Indicative Literature

e T.Tao (2016) Analysis third edition New Delhi: Hindustan Book Agency.
e W. Rudin (1976) Principles of Mathematical Analysis third edition New York: McGraw-Hill.

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Analysis Written 120 100 45% 1-4
Examination Minutes

Module Achievement

34

7.1.4 Linear Algebra

Module Name Linear Algebra

Module Code 2025-CH-151

Module ECTS 7.5

Program Owner 2025-MMDA-BSc
(Mathematics, Modeling, and Data
Analytics)

Module Coordinator Dr. lvan Ovsyannikov

Study Semester

Program Semester | Status
2025-minor-Mathematics 2 Mandatory
Minor in Mathematics
2025-MMDA-BSc 2 Mandatory
Mathematics, Modeling, and Data Analytics
2025-SDT-BSc 2 Mandatory
Software, Data and Technology Elective
Student Workload
Lecture | 35
Tutorial | 17.5

Independent Study | 135

Total Hours | 187.5

Module Components Number Type cp
Linear Algebra CH-151 Lecture 7.5

Module Description

This module continues the introduction to Linear Algebra from the methods module "Matrix Algebra
and Advanced Calculus I". The fundamental concepts and techniques of Linear Algebra are introduced
in a rigorous and more abstract way. The first half of this module covers vector spaces and linear maps,
while the second half covers inner products and geometry.

The following topics will be covered:
- Vector spaces

- Linear Operators

- Dual spaces

- Isomorphisms

- Connection to matrices

35

- Sums and direct sums

- Fundamental spaces of a linear operator

- Diagonalization of linear operators (on finite dimensional spaces)
- Cayley-Hamilton theorem

- Jordan decomposition

- Jordan normal form and its applications to linear differential equations
- Decomplexification and complexification

- Bilinear Forms and their classification

- Quadratic forms and orthogonalization

- Euclidean and unitary spaces

- Orthogonal and unitary operators

- Self-adjoint operators

Recommended Knowledge

- Basic matrix algebra at the level achieved in “Matrix Algebra and Advanced Calculusl!”
- Revise your matrix algebra.

- Unless prepared otherwise, take the Methods module "Matrix Algebra and Advanced Calculus" in the
first semester.

Usability and Relationship to other Modules

- This module is part of the core education in Mathematics

- This module is valuable for students in Computer Science, RIS, and ECE, either as part of a minor in
Mathematics, or as an elective module.

- The curriculum is integrated with the curriculum of the module "Matrix Algebra and Advanced
Calculus | and II"® in the following way: "Matrix Algebra and Advanced Calculus | and II" emphasizes
the operational aspects, computational skills, and intuitive understanding, while Linear Algebra builds
rigorous foundations of the field, emphasizing proof, abstraction, and mathematical rigor.

Intended Learning Outcomes

No | Competence ILO
1 | Describe Describe the concept of a vector space and linear operator in an
abstract way.
2 | Explain Explain the connection of abstract linear algebra in the context of
matrix algebra.
3 | Discuss Discuss the proofs of the major theorems from class.
4 | lllustrate [llustrate the use of bilinear forms and their role in geometry.

36

5 | Distinguish

Distinguish bilinear forms in the context of Euclidean, unitary and

symplectic spaces.

Indicative Literature

e G. Strang (2016) Introduction to Linear Algebra Wellesley: Wellesley-Cambridge Press fifth

edition.

e P.K. Kostrikin Yu Manin (1997) Linear Algebra and Geometry London: Gordon and Breach.
e S, Axler (2005) Linear Algebra Done Right third edition Berlin: Springer.
e S.Lang (1986) Introduction to Linear Algebra second edition Berlin: Springer.

Entry Requirements

Prerequisites None

Co-requisites None

Additional Remarks None

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs

Type or (%) m for
Length Pass

Linear Algebra Written 120 100 45% 1-5

Examination Minutes

Module Achievement

37

7.1.5 Digital Systems and Computer Architecture

Module Name Digital Systems and Computer Architecture
Module Code 2025-CH-234
Module ECTS 7.5
Program Owner 2025-CS-BSc
(Computer Science)
Module Coordinator Prof. Dr. Jiirgen Schénwalder
Study Semester
Program Semester | Status
2025-CS-BSc 2 Mandatory
Computer Science
2025-ECE-BSc 2 Mandatory
Electrical and Computer Engineering
2025-RIS-BSc 2 Mandatory
Robotics and Intelligent Systems
2025-SDT-BSc 2 Mandatory
Software, Data and Technology Elective
Student Workload
Lecture | 35
Tutorial | 17.5
Independent Study | 115
Exam Preparation | 20
Total Hours | 187.5
Module Components Number Type cp
Digital Systems and Computer | CH-234-A Lecture 5
Architecture
Digital Systems and Computer | CH-234-B Tutorial 2.5
Architecture Tutorial

Module Description

The module introduces the essential hardware components of a digital computer system. Students will
learn how useful digital circuits to add numbers or to store data can be constructed out of basic logic
gates. Using these building blocks, the module will introduce how a simple processor can be
constructed and how it interacts with memory systems and other components of a computer system.
Students will practice the basics of assembler programming to understand program execution at the
hardware level.

38

Usability and Relationship to other Modules

This module introduces students to the digital hardware components of a computer system. Students
attain an understanding of program execution at the hardware level. Other modules requiring an
understanding of program execution at the hardware level may require this module as a prerequisite.

Intended Learning Outcomes

No | Competence ILO
1 | Understand Understand the architecture of a digital computer.
2 | Explain Explain the representation of numbers (integers and floats).
3 | Summarize Summarize basic laws of Boolean algebra.
4 | Describe Describe basic logic gates and which Boolean functions they
implement.
5 | Construct Construct and analyze basic combinational digital circuits (e.g.,
adder, comparator, multiplexer).
6 | Design Design and analyze basic sequential digital circuits (e.g., latches, flip-
flops).
7 | Outline Outline the basic structure of the von Neumann computer
architecture.
8 | Explain Explain the execution of machine instructions on a von Neumann
computer.
9 | Develop Develop simple programs in an assembler language such as the RISC-
V.
10 | Demonstrate Demonstrate how function calls are executed and the role of the
stack.
11 | Understand Understand microarchitectural concepts and the importance of the
memory hierarchy.
12 | Explain Explain the purpose and principles of operation of the components
of a computer system.

Indicative Literature

e John L Hennessy, David A. Patterson: Computer Architecture: A Quantitative Approach, 6th
edition, Morgan Kaufmann, 2017.

e Sarah Harris, David Harris: Digital Design and Computer Architecture: RISC-V Edition, Morgan
Kaufmann, 2021.

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

39

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs

Type or (%) m for
Length Pass

Digital Systems and | Written 120 100 45% 1-12

Computer Architecture Examination Minutes

Digital Systems and 1-12

Computer Architecture

Tutorial

Module Achievement

The module achievement ensures that a sufficient level of practical experience with digital systems
and computer architecture has been obtained before attempting the exam. The module achievement
consists of homework assignments. Students have to obtain 50% out of 10 assignments. Two additional

makeup assignments are offered during the semester and one more during August.

40

7.1.6 Development in JVM Languages

Module Name

Development in JVM Languages

Module Code

2025-SDT-103

Module ECTS

7.5

Program Owner

2025-SDT-BSc
(Software, Data and Technology)

Module Coordinator

Prof. Dr. Alexander Omelchenko

Study Semester
Program Semester | Status
2025-CS-BSc 2 Mandatory
Computer Science Elective
2025-SDT-BSc 2 Mandatory
Software, Data and Technology
Student Workload
Class Attendance | 35
Tutorial | 35
Independent Study | 97.5
Exam Preparation | 20
Total Hours | 187.5
Module Components Number Type cp
Development in JVM Languages - | SDT-103-B Tutorial 5
Tutorial
Development in JVM Languages SDT-103-A Lecture 2.5

Module Description

In this module students will learn about the Kotlin programming language, a modern, powerful and
expressive language that is used for various purposes from android development, web development
to data science. Students will learn how to apply Kotlin to solve practical problems in software
development and will learn about data types, variables and control flow, functions, object-oriented
programming, exception handling, collections and generics, lambdas, and higher-order functions. They
will also learn about the unique features of Kotlin such as null safety, extension functions and type

inference.

Educational Aims:

- To provide students with a solid foundation in the Kotlin programming language

- To teach students how to apply Kotlin to solve practical problems in software development

- To enable students to write efficient, readable and maintainable code using Kotlin

41

- To familiarize students with the unique features of Kotlin such as null safety, extension functions, and
type inference

- To prepare students for using Kotlin in Android Development.

- To give students a deeper understanding of the fundamental concepts of computer science, such as
algorithms and data structures and how they can be applied to software development.

A single assessment type cannot sufficiently test all intended learning outcomes. The program code
evaluates practical skills, whereas the written examination assesses understanding of theoretical
knowledge, core principles, and analytical reasoning.

Recommended Knowledge

Students should refresh their knowledge of the C++ and Python programming language and be able to
solve simple programming problems in C++ and Python. Students are expected to have a working
programming environment.

Usability and Relationship to other Modules

Familiarity with Kotlin programming language is essential for students who wish to specialize in android
development, web development or data science. This module will provide a solid foundation in Kotlin
programming, including its unique features such as null safety, extension functions, and type inference.
Additionally, this module will introduce advanced concepts of programming that are needed in
advanced programming-oriented modules in the 2nd and 3rd years of the SDT program.

Intended Learning Outcomes

No | Competence ILO
1 | Write Write, understand and debug Kotlin code effectively
2 | Use Use the unique features of Kotlin to write readable, maintainable
and expressive code.
3 | Use Use Kotlin to solve practical problems in software development.
4 | Design Design and implement object-oriented programs in Kotlin.
5 | Use Use Kotlin collections and Generics in their programs.
6 | Use Use Lambdas and Higher-Order functions in Kotlin.
7 | Use Use Kotlin for android development.
8 | Write Write efficient and optimized code using Kotlin.
9 | Use Use Kotlin for web development.
10 | Use Use Kotlin for data science.

Indicative Literature

e Antonio Leiva: Kotlin for Android Developers, Leanpub, 2015.

e Dmitry Jemerov and Svetlana Isakova: Kotlin in Practice, JetBrains, 2016.
e Hadi Hariri: Kotlin in Action, Manning Publications, 2017.

e Marcin Moskala: Kotlin Programming, Packt Publishing, 2018.

e Venkat Subramaniam: Programming Kotlin, Pragmatic Bookshelf, 2017.

42

Entry Requirements

Prerequisites

2025-CH-230
Programming in C and C++

Co-requisites None
Additional Remarks None
Assessment and Completion
Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Development in JVM | Program Code 67 45% All
Languages - Tutorial practical
ILOs
Development in JVM | Written 60 33 45% All
Languages Examination Minutes theoretic
al ILOs

Module Achievement

43

7.1.7 Core Algorithms and Data Structures

Module Name Core Algorithms and Data Structures
Module Code 2025-SDT-102
Module ECTS 7.5
Program Owner 2025-SDT-BSc
(Software, Data and Technology)

Module Coordinator Dr. Kinga Lipskoch
Study Semester
Program Semester | Status
2025-SDT-BSc 2 Mandatory

Software, Data and Technology

Student Workload
Exam Preparation | 20
Independent Study | 115
Lecture | 35
Tutorial | 17.5
Total Hours | 187.5
Module Components Number Type cp
Core Algorithms and Data Structures - | SDT-102-B Laboratory 2.5
Lab
Core Algorithms and Data Structures | SDT-102-A Lecture 5

Module Description

Algorithms and data structures are the foundation of computer science and are crucial for the design
and implementation of efficient software programs. In this module, students will learn about
fundamental algorithms for solving problems and about data structures for storing, accessing, and
modifying data in an efficient manner. They will also learn techniques for analyzing the computational
and memory complexities of algorithms and data structures. These concepts and techniques form the
basis for almost all computer programs and are essential for success in the fields of software, data and
technology.

Content:

- Introduction (asymptotic analysis of algorithms, analysis of recurrence relations, sums and integrals,
time complexity, non-asymptotic optimizations, cache)

- Basic data structures (array, list, stack, queue, vector, hash tables, binary heap, heapsort, etc.)
- Sorting algorithms and heaps (quadratic sorting, stable sorting, mergesort, etc.)

- Graphs: depth-first search (DFS) and breadth-first search (BFS) algorithms.

44

- Graphs: matchings, colorings, flows, cuts.
- Graphs: shortest paths
- Introduction to Complexity Theory, Probabilistic Algorithms

- Numerical and Algebraic Algorithms

Recommended Knowledge

Students should refresh their knowledge of the C, C++ and Python programming language and be able
to solve simple programming problems in C, C++ and Python. Students are expected to have a working
programming environment.

Usability and Relationship to other Modules

This module will provide students with a solid foundation for understanding how to design and analyze
algorithms for solving problems, as well as data structures for efficiently storing and manipulating data.

Intended Learning Outcomes

No | Competence ILO

1 | Analyze Analyze the time and space complexity of algorithms and optimize
them using asymptotic analysis and non-asymptotic techniques such
as cache optimization.

2 | Implement Implement and evaluate various data structures including arrays,
lists, stacks, queues, vectors, hash tables, binary heaps, and
heapsort.

3 | Compare Compare and contrast different sorting algorithms, including

guadratic sorting, stable sorting, and mergesort, and understand the
trade-offs involved in their use.

4 | Implement Implement depth-first search (DFS) and breadth-first search (BFS)
algorithms and understand their applications in graph theory.
5 | Analyze Analyze matchings, colorings, flows, and cuts in graphs, and

understand the algorithms and mathematical foundations used to
solve these problems.

6 | Implement Implement shortest path algorithms in graphs and understand their
applications in network design and routing.

7 | Understand Understand the fundamental concepts of complexity theory and
probabilistic algorithms, and apply them in solving computational
problems.

8 | Analyze Analyze and implement numerical and algebraic algorithms and
understand their applications in a variety of fields.

9 | Develop Develop the ability to analyze, design, and implement algorithms for
solving real-world problems and understand the trade-offs involved
in their use.

45

Indicative Literature

e David E. Goldberg: Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Wesley, 1989.

e Donald E. Knuth: The Art of Computer Programming: Fundamental Algorithms, volume 1, 3rd
edition, Addison Wesley Longman Publishing, 1997.

e Jon Kleinberg and Eva Tardos: Algorithm Design, 1st edition, Pearson, 2005.

e Michael T. Goodrich, Roberto Tamassia, and Michael H. Goldwasser: Data Structures and
Algorithms in Python, John Wiley & Sons, 2013.

e Robert Sedgewick and Kevin Wayne: Algorithms, 4th edition, Addison-Wesley, 2011.

e Steven Skiena: The Algorithm Design Manual, 2nd edition, Springer, 2008.

e Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein: Introduction to
Algorithms, 3rd edition, MIT Press, 2009.

Entry Requirements

Prerequisites 2025-CH-230
Programming in C and C++

Co-requisites None
Additional Remarks None

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass

Core Algorithms and Data | Program Code 33 45% All

Structures - Lab practical
ILOs of
the
module.

Core Algorithms and Data | Written 120 67 45% All

Structures Examination Minutes theoretic
al ILOs of
the
module

Module Achievement

46

7.1.8 Mathematical Foundations of Computer Science

Module Name Mathematical Foundations of Computer
Science
Module Code 2025-CH-233
Module ECTS 7.5
Program Owner 2025-CS-BSc
(Computer Science)
Module Coordinator Prof. Dr. Jiirgen Schénwalder
Study Semester
Program Semester | Status
2025-CS-BSc 1 Mandatory
Computer Science
2025-SDT-BSc 1 Mandatory
Software, Data and Technology

Student Workload
Class Attendance | 35
Tutorial | 17.5
Independent Study | 115
Exam Preparation | 20
Total Hours | 187.5
Module Components Number Type cp
Mathematical Foundations of | CH-233-A Lecture 5
Computer Science
Mathematical Foundations of | CH-233-B Tutorial 2.5
Computer Science Tutorial

Module Description

The module introduces students to the mathematical foundations of computer science. Students learn
to reason logically and clearly. They acquire the skill to formalize arguments and to prove propositions
mathematically using elementary logic. Students are also introduced to fundamental concepts of graph
theory and elementary graph algorithms.

After establishing the concept of algorithms, the first part covers basic elements of discrete
mathematics, leading to

Boolean algebra, propositional logic, and predicate logic. Students learn how to use fundamental proof
techniques to prove (or disprove) simple propositions. The second part of the module introduces
students to basic concepts of algebraic structures like groups, rings, and fields and different structure
preserving maps (homomorphisms). Students study how these abstract concepts relate to problems
in computer science. The last part of the module covers the basic elements of graph theory and the

47

different representation of graphs. Elementary graph algorithms are introduced that have a wide range
of applicability in computer science.

Recommended Knowledge

It is recommended that students revise mathematical concepts from their high school education.

Usability and Relationship to other Modules

This module introduces key mathematical concepts and teaches students to work with mathematical
abstractions that are relevant for computer science. The acquired skills are relevant for subsequent
courses covering theoretical or abstract

aspects of computer science.

Intended Learning Outcomes

No | Competence ILO
1 | Explain Explain basic concepts and properties of algorithms.
2 | Understand Understand the concept of termination and complexity metrics.
3 | lllustrate Illustrate basic concepts of discrete math (sets, relations, functions).
4 | Use Use basic proof techniques and apply them to prove properties of
algorithms.
5 | Summarize Summarize basic principles of Boolean algebra and propositional
logic.
6 | Use Use predicate logic and outline concepts such as validity and
satisfiability.
7 | Distinguish Distinguish abstract algebraic structures such as groups, rings and
fields.
8 | Classify Classify different structure preserving maps (homomorphisms).
9 | Understand Understand calculations in finite fields and their applicability to
computer science.
10 | Explain Explain elementary concepts of graph theory and use different
graph representations.
11 | Outline Outline basic graph algorithms (e.g., traversal, search, spanning
trees).

Indicative Literature

e Eric Lehmann, F. Thomson Leighton, Albert R. Meyer: Mathematics for Computer Science,
online 2018.

e Winfried K. Grassmann, Jean-Paul Tremblay: Logic and Discrete Mathematics: A Computer
Science Perspective, Pearson, 1996.

Entry Requirements

Prerequisites None

48

Co-requisites

None

Additional Remarks None
Assessment and Completion
Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Mathematical Written 120 100 45% All
Foundations of Computer | Examination Minutes

Science

Mathematical
Foundations of Computer
Science Tutorial

Module Achievement

The module achievement ensures that a sufficient level of knowledge has been obtained before
attempting the exam. The module achievement consists of homework assignments. Students have to
obtain 50% out of 10 assighments. Two additional makeup assignments are offered during the
semester and one more during the intersession.

49

7.1.9 Operating Systems

Module Name Operating Systems

Module Code 2025-C0O-562

Module ECTS 7.5

Program Owner 2025-CS-BSc

(Computer Science)

Module Coordinator Prof. Dr. Jiirgen Schénwalder

Study Semester

Program Semester | Status

2025-CS-BSc 3 Mandatory
Computer Science

2025-SDT-BSc 3 Mandatory
Software, Data and Technology

Student Workload
Class Attendance | 52.5
Exam Preparation | 20
Independent Study | 115
Total Hours | 187.5
Module Components Number Type cp
Operating Systems CO-562-A Lecture 7.5

Module Description

This module introduces concepts and principles used by operating systems to provide programming
abstractions that enable an efficient and robust execution of application programs. Students will gain
an understanding of how an operating system kernel manages hardware components and how it
provides abstractions such as processes, threads, virtual memory, file systems, and inter-process
communication facilities. Students learn the principles of event-driven and concurrent programming
and the mechanisms that are necessary to solve synchronization and coordination problems, thereby
avoiding race conditions, deadlocks, and resource starvation. The Linux kernel and runtime system will
be used throughout the course to illustrate how key ideas and concepts have been implemented and
how application programs can use them.

Recommended Knowledge

- Students are expected to understand data representation and program execution at the machine
instruction level as covered in the module Introduction to Computer Science.

- Students are expected to have a working Linux installation, which allows them to compile and run
sample programs provided by the instructor and to implement their own solutions for homework
assighments.

50

Usability and Relationship to other Modules

This module enables students to write programs that make efficient use of the services provided by
the operating system kernel. This is particularly important for advanced modules on computer
networks, robotics, and embedded systems.

Intended Learning Outcomes

No | Competence ILO
1 | Explain Explain the differences between processes, threads, application
programes, libraries, and operating system kernels.
2 | Describe Describe well-known mutual exclusion and coordination problems.
3 | Use Use semaphores to achieve mutual exclusion and solve coordination
problems.
4 | Use Use mutual exclusion locks and condition variables to solve
synchronization and coordination problems.
5 | lllustrate Illustrate how deadlocks can be avoided, detected, and resolved.
6 | Summarize Summarize the different mechanisms to realize virtual memory and
their trade-offs.
7 | Solve Solve basic inter-process communication problems using signals and
pipes.
8 | Use Use socket inter-process communication primitives.
9 | Use Multiplex 1/O activities using suitable system calls and libraries.
10 | Describe Describe file system programming interfaces and the design of file
systems at the operating system kernel level.
11 | Explain Explain how memory mapping can improve I/O performance.
12 | Restate Restate the functionality of a linker and the difference between
static linking and dynamic linking.
13 | Outline Outline how different device types are supported by Unix-like
kernels.
14 | Discuss Discuss virtualization mechanisms such as containers or virtual
machines.

Indicative Literature

Abraham Silberschatz, Peter B. Galvin, Greg Gagne: Applied Operating System Concepts, John

Wiley, 2000.

Andrew S. Tanenbaum, Herbert Bos: Modern Operating Systems, Prentice Hall, 4th edition,

Pearson, 2015.

Robert Love: Linux Kernel Development, 3rd edition, Addison Wesley, 2010.

Robert Love: Linux System Programming: Talking Directly to the Kernel and C Library, 2nd
edition, O'Reilly, 2013.
William Stallings: Operating Systems: Internals and Design Principles, 8th edition, Pearson,

2014.

51

Entry Requirements

Prerequisites

2025-SDT-102
Core Algorithms and Data Structures

OR

2025-CH-231
Algorithms and Data structures

2025-CH-234
Digital Systems and Computer Architecture

Co-requisites

None

Additional Remarks

Algorithms and Data Structures OR Core
Algorithms and Data Structures.

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Operating Systems Written 120 100 45% 1-14
Examination Minutes

Module Achievement

The module achievement ensures that students have obtained a sufficient level of practical system
programming skills. The module achievement consists of hands-on homework assignments. Students
have to obtain 50% out of 10 assignments. Two additional makeup assignments are offered during the

semester and one more during the intersession.

52

7.1.10 Functional Programming

Module Name

Functional Programming

Module Code

2025-SDT-202

Module ECTS

5

Program Owner

2025-SDT-BSc
(Software, Data and Technology)

Module Coordinator

Prof. Dr. Alexander Omelchenko

Study Semester
Program Semester | Status
2025-CS-BSc 3 Mandatory
Computer Science Elective
2025-Minor-Software Development 3 Mandatory
Minor in Software Development
2025-SDT-BSc 3 Mandatory
Software, Data and Technology Elective
Student Workload
Lecture | 17.5
Tutorial | 17.5
Independent Study | 70
Exam Preparation | 20
Total Hours | 125
Module Components Number Type cp
Functional Programming Tutorial SDT-202-B Tutorial 2.5
Functional Programming SDT-202-A Lecture 2.5

Module Description

The goal of this discipline is to provide students with a solid foundation in functional programming
principles and techniques, focusing on the theoretical knowledge and practical skills required to
effectively work with functional languages. The module explores the core concepts, language
structures, syntax, and semantic constructs of functional programming languages, emphasizing their
applicability in modern software development.

Content:

- Fundamentals of functional programming: lambda calculus and combinatory logic.

- Haskell programming language: syntax, semantics, standard library.

- Manage effects using applicative functors and monads.

- Type systems of functional languages.

53

A single assessment type cannot sufficiently test all intended learning outcomes. The program code
evaluates practical skills, whereas the written examination assesses understanding of theoretical
knowledge, core principles, and analytical reasoning.

Recommended Knowledge

It is recommended that students install a Linux system such as Ubuntu on their notebooks and that
they become familiar with basic tools such as editors (vim or emacs) and the basics of a shell. The
Glasgow Haskell Compiler (GHC) will be used for implementing Haskell programs.

Usability and Relationship to other Modules

Familiarity with functional programming concepts and principles is increasingly important in fields such
as data science, artificial intelligence, and software development. This module provides a solid
foundation in functional programming techniques and languages, which are essential for advanced
modules in computer science and data science. Additionally, this module introduces advanced
concepts of functional programming that are needed in advanced programming-oriented modules in
the 2nd and 3rd years of the SDT program.

Intended Learning Outcomes

No | Competence ILO

1 | Collaborate Collaborate effectively within a team in the IT field, utilizing project
management tools, communication skills, and software for team
project activities to jointly develop projects.
2 | Compare Compare and contrast the advantages and disadvantages of the
functional programming paradigm, and apply functional
programming techniques to solve applied problems using languages
such as Haskell
3 | Understand Understand and utilize the basic type systems of functional
languages and their extensions with polymorphic and recursive
types to create efficient, well-structured code in a functional
programming context
4 | Choose Choose between lazy and eager evaluation strategies based on the
specific requirements of a problem or application, and implement
software solutions using a functional programming paradigm.
5 | Explain Explain the computational model underlying functional
programming and implement algorithms in functional languages
using key concepts such as immutable data structures, recursion,
and pattern matching
6 | Employ Employ generic annotations and type classes to describe interfaces
and ensure static control, promoting code reusability and
maintainability in functional programming projects

54

Indicative Literature

e Hughes, John. "Why functional programming matters." The computer journal 32.2 (1989): 98-
107.

e Miran Lipovaca. Learn You a Haskell for Great Good.

e O'Sullivan, Bryan, John Goerzen, and Don Stewart. Real World Haskell. O'Reilly Media, Inc.,
2008.

Entry Requirements

Prerequisites 2025-SDT-102
Core Algorithms and Data Structures

OR

2025-CH-231
Algorithms and Data structures

Co-requisites None
Additional Remarks Algorithms and Data Structures OR Core
Algorithms and Data Structures.

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Functional Programming | Program Code 50 45% All
Tutorial practical
ILOs of
the
module
Functional Programming | Written 60 50 45% All
Examination Minutes theoretic
al ILOs of
the
module

Module Achievement

55

7.1.11 Scientific Data Analysis

Module Name Scientific Data Analysis
Module Code 2025-C0-489
Module ECTS 5
Program Owner 2025-PHDS-BSc
(Physics and Data Science)
Module Coordinator Prof. Dr. Veit Wagner
Study Semester
Program Semester | Status
2025-MMDA-BSc 3 Mandatory
Mathematics, Modeling, and Data Analytics
2025-PHDS-BSc 3 Mandatory
Physics and Data Science Elective
2025-SDT-BSc 3 Mandatory
Software, Data and Technology Elective
Student Workload
Homework | 55
Independent Study | 35
Lecture | 35
Total Hours | 125
Module Components Number Type cp
Scientific Data Analysis C0O-489-A Lecture 5

Module Description

Interpretation of scientific data is at the core of knowledge creation in any science. Proper tools and
analysis techniques are the foundation for new theory validation against experimental findings,
parameter extraction from computational or experimental data, and to discover data relationships in
given data sets. This holds for all fields of physics, for the natural sciences in general and for fields
beyond. This module provides a calculus-based introduction to analytical techniques applied to
scientific data sets. Topics include probability distributions, linear and non-linear least square
estimation, Bayesian statistics, Fourier analysis, (time) sequence analysis including power spectra and
convolution, principal component analysis, data visualization techniques, as well as error and outlier
analysis. Exemplary datasets from experimental and computational sources are used throughout the
course. The course introduces their proper handling and data organization in databases. The course is
part of the core physics and data science as well as the core mathematics, modeling and data analytics
education. It builds on the foundation of the programming lab, the data handling in first year lab
courses and first year mathematics foundations. Essential practical experience in applying the various
analysis techniques and their visualization will be supported by homework exercises in close
coordination with the lectures. The aim of the module is to enable students to properly handle, store,

56

analyze and visualize larger multidimensional scientific datasets by various methods and from various
fields, and to prepare students for the data handling in their BSc thesis research. At the same time,
students' programming and mathematical repertoires as well as their problem-solving skills are
developed. The module also serves as a foundation for specialization subject modules.

Recommended Knowledge

- Mathematics at the level of the Mathematical Modelling Module.
- Basic programming skills in Python.

- Review mathematics/linear algebra/statistics and programming at the level of the first-year courses.

Intended Learning Outcomes

No | Competence ILO

1 | Perform Perform curve and model fitting.

2 | Conduct Conduct advanced data analysis including Fourier analysis and
Bayesian statistics.

3 | Understand Understand error handling in multidimensional complex data
analysis.

4 | Store Store, import, handle and visualize large data sets.

Indicative Literature

e Edward L. Robinson: Data Analysis for Scientists and Engineers, Princeton University Press,
2016.
e Graham Currell: Scientific Data Analysis, Oxford University Press, 2015.

Entry Requirements

Prerequisites 2025-SDT-104
Scientific Programming with Python

Co-requisites None

Additional Remarks None

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Scientific Data Analysis Portfolio (Assignm | 100 45% 1-4
Assessment ents,
Quizzes)

57

Module Achievement

58

7.1.12 Advanced Algorithms and Data Structures

Module Name Advanced Algorithms and Data Structures
Module Code 2025-SDT-201
Module ECTS 5
Program Owner 2025-SDT-BSc
(Software, Data and Technology)
Module Coordinator Dr. Kinga Lipskoch
Study Semester
Program Semester | Status
2025-SDT-BSc 3 Mandatory
Software, Data and Technology

Student Workload
Lecture | 17.5
Tutorial | 17.5
Independent Study | 70
Exam Preparation | 20
Total Hours | 125
Module Components Number Type cp
Advanced Algorithms and Data SDT-201-B Tutorial 2.5
Structures Tutorial
Advanced Algorithms and Data | SDT-201-A Lecture 2.5
Structures

Module Description

This module builds on the concepts and techniques covered in "Core Algorithms and Data Structures"
and provides students with a deeper understanding of these important topics. The module will focus
on more advanced algorithms and data structures that are commonly used in practice, and will provide
students with a solid foundation for more advanced coursework in the program and for professional
development in the field of software, data and technology.

Content:

- Advanced data structures such as B-trees, AVL trees, and hash tables
- Advanced algorithms for sorting, searching, and graph manipulation
- Techniques for parallel and distributed algorithms

- Algorithms for network flow and linear programming

- Algorithms for approximation and randomization

59

- Advanced algorithms for specific areas such as computational geometry, cryptography, and machine
learning

- Techniques for analyzing the performance of algorithms and data structures and making trade-offs
between time and space complexity

A single assessment type cannot sufficiently test all intended learning outcomes. The practical
assessment evaluates practical skills, whereas the written examination assesses understanding of
theoretical knowledge, core principles, and analytical reasoning.

Recommended Knowledge

Students should refresh their knowledge of the C++ and Python programming language and be able to
solve simple programming problems in C++ and Python. Students are expected to have a working
programming environment. Also they should refresh their knowledge of the basics of algorithms and
data structures.

Usability and Relationship to other Modules

Familiarity with advanced algorithms and data structures is essential for almost all advanced modules
in SDT. This module builds upon the concepts covered in "Core Algorithms and Data Structures" and
introduces more advanced algorithms and data structures that are commonly used in practice.
Additionally, the module covers techniques for designing, implementing and analyzing efficient
algorithms and data structures, and provides students with hands-on experience implementing these
concepts in a programming language. This module is essential for students planning to continue their
studies in the 2nd and 3rd years of the SDT program, as well as for those planning to pursue a career
in the field of computer science.

Intended Learning Outcomes

No | Competence ILO

1 | Design Design, implement and analyze advanced algorithms and data
structures for various problems.

2 | Understand Understand the trade-offs between time and space complexity and
make appropriate decisions when choosing algorithms and data
structures.

3 | Apply Apply advanced algorithms and data structures to solve problems in

different areas of computer science such as distributed systems,
databases, and machine learning.

4 | Understand Understand and use parallel and distributed algorithms

5 | Understand Understand the concepts of computational complexity theory and
use them to analyze the performance of algorithms and data
structures

6 | Understand Understand the properties and use of specific algorithms and data
structures used in different areas of computer science

7 | Apply Apply mathematical concepts and formalize algorithms to solve

practical problems

60

Indicative Literature

e David E. Goldberg: Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Wesley, 1989.

e Jon Kleinberg and Eva Tardos: Algorithm Design, 1st edition, Pearson, 2005.

e Michael T. Goodrich, Roberto Tamassia, and Michael H. Goldwasser: Data Structures and
Algorithms in Python, John Wiley & Sons, 2013.

e Robert Sedgewick and Kevin Wayne: Algorithms, 4th edition, Addison-Wesley, 2011.

e Steven Skiena: The Algorithm Design Manual, 2nd edition, Springer, 2008.

e Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein: Introduction to
Algorithms, 3rd edition, MIT Press, 2009.

Entry Requirements

Prerequisites 2025-SDT-102
Core Algorithms and Data Structures

OR

2025-CH-231
Algorithms and Data structures

Co-requisites None
Additional Remarks Algorithms and Data Structures OR Core
Algorithms and Data Structures.

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass

Advanced Algorithms and | Practical 50 45% All

Data Structures Tutorial Assessment practical
ILOs of
the
module

Advanced Algorithms and | Written 60 50 45% All

Data Structures Examination Minutes theoretic
al ILOs of
the
module

Module Achievement

61

7.1.13 Machine Learning

Module Name

Machine Learning

Module Code 2025-C0-541
Module ECTS 5
Program Owner 2025-RIS-BSc

(Robotics and Intelligent Systems)

Module Coordinator

Prof. Dr. Francesco Maurelli

Study Semester
Program Semester | Status
2025-CS-BSc 4 Mandatory
Computer Science Elective
2025-Minor-Software Development 4 Mandatory
Minor in Software Development
2025-MMDA-BSc 4 Mandatory
Mathematics, Modeling, and Data Analytics
2025-PHDS-BSc 4 Mandatory
Physics and Data Science Elective
2025-RIS-BSc 4 Mandatory
Robotics and Intelligent Systems
2025-SDT-BSc 4 Mandatory
Software, Data and Technology
2025-IEM-BSc 6 Mandatory
Industrial Engineering & Management Elective
Student Workload
Class Attendance | 35
Exam Preparation | 20
Independent Study | 70
Total Hours | 125
Module Components Number Type cp
Machine Learning CO-541-A Lecture 5

Module Description

Machine learning (ML) concerns algorithms that are fed with (large quantities of) real-world data, and
which return a compressed "model" of the data. An example is the "world model" of a robot; the input
data are sensor data streams, from which the robot learns a model of its environment, which is needed,
for instance, for navigation. Another example is a spoken language model; the input data are speech
recordings, from which ML methods build a model of spoken English; this is useful, for instance, in
automated speech recognition systems. There exist many formalisms in which such models can be

cast, and an equally large diversity of learning algorithms. However, there is a relatively small number

62

of fundamental challenges that are common to all of these formalisms and algorithms. The lectures
introduce such fundamental concepts and illustrate them with a choice of elementary model
formalisms (linear classifiers and regressors, radial basis function networks, clustering, online adaptive
filters, neural networks, or hidden Markov models). Furthermore, the lectures also (re-)introduce
required mathematical material from probability theory and linear algebra.

Usability and Relationship to other Modules

- This module gives a thorough introduction to the basics of machine learning. It complements the
Artificial Intelligence module.

Intended Learning Outcomes

No | Competence ILO
1 | Understand Understand the notion of probability spaces and random variables
2 | Understand Understand basic linear modeling and estimation techniques
3 | Understand Understand the fundamental nature of the "curse of dimensionality"
4 | Understand Understand the fundamental nature of the bias-variance problem
and standard coping strategies
5 | Use Use elementary classification learning methods (linear
discrimination, radial basis function networks, multilayer
perceptrons)
6 | Implement Implement an end-to-end learning suite, including feature
extraction and objective function optimization with regularization
based on cross-validation

Indicative Literature

e (. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

e S, Shalev-Shwartz, Shai Ben-David: Understanding Machine Learning, Cambridge University
Press, 2014.

e T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining,
Inference, and Prediction, 2nd edition, Springer, 2008.

e T.M. Mitchell, Machine Learning, Mc Graw Hill, India, 2017.

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None
Assessment and Completion
Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass

63

Machine Learning

Written
Examination

120
Minutes

100

45%

1-6

Module Achievement

64

7.1.14 Discrete Mathematics

Module Name Discrete Mathematics
Module Code 2025-C0-501
Module ECTS 5
Program Owner 2025-MMDA-BSc
(Mathematics, Modeling, and Data
Analytics)

Module Coordinator Prof. Dr. Keivan Mallahi Karai
Study Semester
Program Semester | Status
2025-MMDA-BSc 4 Mandatory

Mathematics, Modeling, and Data Analytics
2025-RIS-BSc 4 Mandatory

Robotics and Intelligent Systems Elective
2025-SDT-BSc 4 Mandatory

Software, Data and Technology Elective
Student Workload

Independent Study | 90
Lecture | 35
Total Hours | 125

Module Components Number Type cp
Discrete Mathematics CO-501-A Lecture 5

Module Description

This module is an introductory lecture in discrete mathematics. The lecture consists of two main
components, enumerative combinatorics and graph theory. The lecture emphasizes connections of
discrete mathematics with other areas of mathematics such as linear algebra and basic probability,
and outlines applications to areas of computer science, cryptography, etc. where employment of ideas
from discrete mathematics has proven to be fruitful. The first part of the lecture—enumerative
combinatorics—deals with several classical enumeration problems (Binomial coefficients, Stirling
numbers), counting under group actions and generating function. The second half of the lecture—
graph theory—includes a discussion of basic notions such as chromatic number, planarity, matchings
in graphs, Ramsey theory, and expanders, and their applications.

Recommended Knowledge

- Basic university mathematics: can be acquired via the Methods Modules “Calculus and Elements of
Linear Algebra | + 1I” or Matrix Algebra and Advanced Calculus.

- Some basic familiarity with linear algebra is useful, but not technically required.

65

- It is recommended to have taken the Methods module: Calculus and Elements of Linear Algebra | + 1I

Usability and Relationship to other Modules

- This module is recommended for students pursuing a minor in Mathematics.

- This module is a good option as an elective module for students in RIS.

Intended Learning Outcomes

No | Competence ILO

1 | Demonstrate Demonstrate their mastery of basic tools in discrete mathematics

2 | Develop Develop the ability to use discrete mathematics concepts (such as
graphs) to model problems in computer science

3 | Analyze Analyze the definition of basic combinatorial objects such as graphs,
permutations, partitions, etc.

4 | Formulate Formulate and design methods and algorithms for solving applied
problems based on concepts from discrete mathematics

Indicative Literature

e B. Bollobas (1998). Modern Graph Theory, Berlin: Springer.
e J.H. van Lint and R.M. Wilson (2001). A Course in Combinatorics, second edition. Cambridge:
Cambridge University Press.

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Discrete Mathematics Written 120 100 45% 1-4
Examination Minutes

Module Achievement

66

7.1.15 Artificial Intelligence

Module Name

Artificial Intelligence

Module Code 2025-C0O-547
Module ECTS 5
Program Owner 2025-RIS-BSc

(Robotics and Intelligent Systems)

Module Coordinator

Prof. Dr. Andreas Birk

Study Semester
Program Semester | Status
2025-CS-BSc 4 Mandatory
Computer Science Elective
2025-Minor-RIS-BSc 4 Mandatory
Minor Option in RIS
2025-RIS-BSc 4 Mandatory
Robotics and Intelligent Systems
2025-SDT-BSc 4 Mandatory
Software, Data and Technology Elective
Student Workload
Class Attendance | 35
Exam Preparation | 20
Independent Study | 70
Total Hours | 125
Module Components Number Type cp
Artificial Intelligence CO-547-A Lecture 5

Module Description

Artificial Intelligence (Al) is an important subdiscipline of Computer Science that deals with
technologies to automate the performance of tasks that are usually associated with intelligence. Al
methods have a significant application potential, as there is an increasing interest and need to generate
artificial systems that can carry out complex missions in unstructured environments without
permanent human supervision. The module teaches a selection of the most important methods in Al.
In addition to general-purpose techniques and algorithms, it also includes aspects of methods that are
especially targeted for physical systems such as intelligent mobile robots or autonomous cars.

Recommended Knowledge

Revise content of the pre-requisite modules.

67

Usability and Relationship to other Modules

This module gives an introduction to Artificial Intelligence (Al) excluding the aspects of machine
learning (ML), which are covered in a dedicated module that complements this one.

Intended Learning Outcomes

No | Competence ILO

1 | Outline Outline and explain the history, general developments, and
application areas of Al.

2 | Apply Apply the basic concepts and methods of behavior-oriented Al.

3 | Use Use concepts and methods of search algorithms for problem-
solving.

4 | Explain Explain the basic concepts of path-planning as an application
example for domain-specific search.

5 | Apply Apply basic path-planning algorithms and compare their relations to
general search algorithms.

6 | Write Write and explain concepts of propositional and first-order logic.

7 | Use Use logic representations and inference for basic examples of
artificial planning systems.

Indicative Literature

e J.-C. Latombe, Robot Motion Planning, Springer, 1991.
e S, Russell and P. Norvig Artificial Intelligence: A Modern Approach, Prentice Hall, 2009.
e S.M. LaValle, Planning Algorithms. Cambridge University Press, 2006.

Entry Requirements

Prerequisites 2025-SDT-102
Core Algorithms and Data Structures

OR

2025-CH-231
Algorithms and Data structures

Co-requisites None

Additional Remarks Algorithms and Data Structures OR Core
Algorithms and Data Structures.

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass

68

Artificial Intelligence

Written
Examination

120
Minutes

100

45%

1-7

Module Achievement

69

7.1.16 Software Engineering and Design

Module Name Software Engineering and Design
Module Code 2025-SDT-204
Module ECTS 7.5
Program Owner 2025-SDT-BSc

(Software, Data and Technology)
Module Coordinator Prof. Dr. Timofey Bryksin

Study Semester

Program Semester | Status

2025-SDT-BSc 4 Mandatory
Software, Data and Technology

Student Workload
Lecture | 17.5
Tutorial | 35
Independent Study | 52.5
Exam Preparation | 20
Total Hours | 125
Module Components Number Type cp
Software Engineering and Design | SDT-204-B Project 5
Project
Software Engineering and Design SDT-204-A Lecture 2.5

Module Description

Educational Aims:

1. To provide students with a comprehensive understanding of software engineering principles,
practices, and

techniques, as well as the software development life cycle.

2. To enable students to analyze and design complex software systems, and to apply appropriate
software

development methodologies and tools.

3. To teach students the best practices for software quality assurance, including testing, debugging,
and software

maintenance.

4. To foster the development of critical thinking skills, problem-solving skills, and communication skills
required

70

for software engineering and design.

5. To introduce students to the latest trends, technologies, and tools in software engineering and
design, and to

prepare them to work effectively in a rapidly evolving field.

6. To encourage students to apply software engineering and design principles to real-world problems
and to

develop solutions that meet business and user needs.

7. To prepare students for professional practice in software engineering and design, including the
ability to work

collaboratively, to manage software development projects, and to apply ethical principles in the
workplace.

8. To promote the development of a lifelong learning mindset, and to encourage students to stay
current with

advances in software engineering and design throughout their careers.

Content:

1. Introduction to Software Engineering and Design
- Overview of software engineering and design principles and practices
- Software development life cycle and its phases

- Roles and responsibilities of software engineers and designers

2. Software Requirements Analysis and Specification

- Understanding and capturing software requirements
- Techniques for analyzing requirements

- Documentation and communication of requirements

- Requirements validation and verification

3. Software Design Principles and Patterns
- Object-oriented design principles

- Design patterns and their applications

- Modeling techniques and tools

- Design trade-offs and considerations

71

4. Software Architecture and Design

- Architectural styles and patterns

- Architecture modeling and documentation
- System and component design

- Integration and testing of software components

5. Software Testing and Quality Assurance
- Testing techniques and strategies

- Test planning and execution

- Quality metrics and measures

- Continuous integration and delivery

6. Software Project Management
- Project planning and estimation
- Risk management and mitigation

- Team organization and communication

7. Agile methodologies and practices

- Emerging Technologies and Trends in Software Engineering and Design
- Cloud computing and software-as-a-service (SaaS)

- Mobile and web application development

- Artificial intelligence and machine learning

- Blockchain technology and distributed systems

8. Ethical and Legal Issues in Software Engineering and Design
- Intellectual property and copyright laws

- Privacy and data protection

- Software piracy and licensing

- Ethical considerations in software development and use.

72

A single assessment type cannot sufficiently test all intended learning outcomes. The program code
evaluates practical skills, whereas the written examination assesses understanding of theoretical
knowledge, core principles, and analytical reasoning.

Recommended Knowledge

Students should be familiar with basic concepts of software development, such as data types, control
structures, and object-oriented programming.

Usability and Relationship to other Modules

The knowledge and skills acquired in this module will be useful for students planning to pursue a career
in software development or data science, or continue their studies in advanced software development
or data science modules. The module will also be beneficial for students planning to pursue a career
in other related fields such as IT management, software testing, or software project management.

Intended Learning Outcomes

No | Competence ILO

1 | Understand Understand the software development life cycle and its phases, and
be able to apply appropriate software development methodologies
and tools to various stages of the process.

2 | Apply Apply software design principles and patterns to develop complex
software systems that meet business and user needs.
3 | Apply Apply appropriate software quality assurance practices, including

testing, debugging, and software maintenance, to ensure the quality
of software products.

4 | Develop Develop critical thinking and problem-solving skills to identify,
analyze, and solve software engineering and design .

5 | Develop Develop effective communication and collaboration skills required
for professional practice in software engineering and design.

6 | Analyze Analyze and evaluate software requirements and specifications, and
develop software that meets those requirements.

7 | Apply Apply appropriate software architecture and design principles and
patterns to design and develop software systems

8 | Apply Apply risk management strategies to identify, analyze, and mitigate
risks associated with software development projects.

9 | Understand Understand the ethical and legal considerations associated with
software development, and apply ethical principles in the
workplace.

10 | Demonstrate Stay current with advances in software engineering and design, and
demonstrate a commitment to lifelong learning in the field.

Indicative Literature

e Craig Larman: Agile and Iterative Development: A Manager's Guide, Addison-Wesley, 2004.

73

Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides: Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1994.

Grady Booch, James Rumbaugh, Ivar Jacobson: The Unified Modeling Language User Guide,
2nd edition, Addison-Wesley, 2005.

lan Sommerville: Software Engineering, 10th edition, Pearson, 2015.

Kent Beck: Test-Driven Development: By Example, Addison-Wesley, 2002.

Martin Fowler: Patterns of Enterprise Application Architecture, Addison-Wesley, 2002.
Michael Feathers: Working Effectively with Legacy Code, Prentice Hall, 2004.

Robert Martin: Agile Software Development, Principles, Patterns, and Practices, Pearson,
2002.

Roger S. Pressman: Software Engineering: A Practitioner's Approach, 8th edition, McGraw-Hill,
2014.

Steve McConnell: Code Complete: A Practical Handbook of Software Construction, 2nd edition,
Microsoft Press, 2004.

Entry Requirements

Prerequisites

2025-C0O-562
Operating Systems

Co-requisites None
Additional Remarks None
Assessment and Completion
Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass

Software Engineering and | Program Code 67 45% All

Design Project practical
ILOs of
the
module

Software Engineering and | Written 60 33 45% All

Design Examination Minutes theoretic
al ILOs of
the
module

Module Achievement

74

7.1.17 Database Fundamentals

Module Name

Database Fundamentals

Module Code

2025-SDT-205

Module ECTS

5

Program Owner

2025-SDT-BSc

(Software, Data and Technology)

Module Coordinator

Prof. Dr. Alexander Omelchenko

Study Semester
Program Semester | Status
2025-SDT-BSc 4 Mandatory
Software, Data and Technology Elective
Student Workload
Lecture | 17.5
Tutorial | 17.5
Independent Study | 70
Exam Preparation | 20
Total Hours | 125
Module Components Number Type cp
Database Fundamentals Project SDT-205-B Project 2.5
Database Fundamentals SDT-205-A Lecture 2.5

Module Description

Content:
- Introduction to databases and data management

- Database design and modeling

- Relational database management systems (RDBMS)

- SQL for data manipulation and querying
- Database normalization and optimization
- NoSQL databases and data warehousing
- Database security and administration

Educational Aims:

- To provide students with a strong foundation in database design, modeling and management

- To teach students how to use SQL to manipulate and query data in a relational database

75

- To enable students to design and implement efficient and normalized databases
- To familiarize students with the unique features of NoSQL databases and data warehousing

- To prepare students for using databases in various fields such as software development, data science,
and business.

A single assessment type cannot sufficiently test all intended learning outcomes. The program code
evaluates practical skills, whereas the written examination assesses understanding of theoretical
knowledge, core principles, and analytical reasoning.

Recommended Knowledge

Working knowledge of basic algorithms and data structures, such as trees, is required as well as
familiarity with an object-oriented programming language such as Kotlin. For the project work,
students benefit from having basic hands-on skills using Linux and, ideally, basic knowledge of a
scripting language such as Python (the official Python documentation is available on).

Usability and Relationship to other Modules

Familiarity with databases is essential for students who wish to specialize in software development
and data science. This module will provide a solid foundation in database design, modeling, and
management, including the use of SQL to manipulate and query data. Additionally, this module will
introduce advanced concepts of database management and NoSQL databases, which are needed in
advanced programming-oriented modules in the 3rd year of the SDT program.

Intended Learning Outcomes

No | Competence ILO
1 | Design Design and model databases.
2 | Use Use SQL to manipulate and query data in a relational database.
3 | Implement Implement and optimize databases using normalization techniques.
4 | Use Use NoSQL databases and data warehousing.
5 | Use Use databases in various fields such as software development, data
science, and business.
6 | Manage Manage and secure databases

Indicative Literature

e C.J. Date: An Introduction to Database Systems, 8th edition, Addison-Wesley, 2004.

e Elmasri Navathe: Fundamentals of Database Systems, 7th edition, Addison-Wesley, 2014.

o Kyle Simpson: You Don't Know JS: Async & Performance, O'Reilly Media, 2014.

e Martin Kleppmann: Designing Data-Intensive Applications: The Big Ideas Behind Reliable,
Scalable, and Maintainable Systems, O'Reilly Media, 2017.

e Ramez Elmasri, Shamkant B. Navathe: Database Systems: Concepts, Design and Applications,
Prentice-Hall, 1999.

76

Entry Requirements

Prerequisites

2025-SDT-102
Core Algorithms and Data Structures

Co-requisites None
Additional Remarks None
Assessment and Completion
Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Database Fundamentals | Program Code 50 45% All
Project practical
ILOs of
the
module
Database Fundamentals Written 60 50 45% All
Examination Minutes theoretic
al ILOs of
the
module

Module Achievement

77

7.1.18 Deep Learning

Module Name Deep Learning
Module Code 2025-MCSSE-AI-01
Module ECTS 5
Program Owner 2025-CSSE-MSc
(Computer Science & Software Engineering)
Module Coordinator Prof. Dr. Andreas Birk
Study Semester
Program Semester | Status
2025-AST-MSc 1 Mandatory
Advanced Software Technology Elective
2025-CSSE-MSc 1 Mandatory
Computer Science & Software Engineering Elective
2025-DE-MSc 1 Mandatory
Data Engineering Elective
2025-CSSE-MSc 3 Mandatory
Computer Science & Software Engineering Elective
2025-DE-MSc 3 Mandatory
Data Engineering Elective
2025-PHDS-BSc 5 Mandatory
Physics and Data Science Elective
2025-SDT-BSc 5 Mandatory
Software, Data and Technology Elective
Student Workload
Exam Preparation | 20
Independent Study | 70
Lecture | 35
Total Hours | 125
Module Components Number Type cp
Deep Learning MCSSE-AI-01 Lecture 5

Module Description

In machine learning we aim at extracting meaningful representations, patterns and regularities from

high-dimensional data. In recent years, researchers from various disciplines have developed “deep”
hierarchical models, i.e. models that consist of multiple layers of nonlinear processing. An important
property of these models is that they can “learn” by reusing and combining intermediate concepts, so

that these models can be used successfully in a variety of domains, including information retrieval,
natural language processing, and visual object detection. After a brief introduction into core

knowledge related to training, model evaluation and multilayer perceptrons, this module focuses on

78

the exposing students to deep learning techniques including convolutional and recurrent neural
networks, autoencoders, generative adversarial networks and reinforcement learning. The central aim
is hence to enable students to critically assess and apply modern methods in machine learning.

Recommended Knowledge

- This module is recommended for students that have been exposed to core knowledge in machine
learning / statistical learning on undergraduate level. Students without this background knowledge can
still join since required core knowledge is re-introduced. Preparation via auxiliary literature or online
courses will facilitate the start into the course.

- Strong knowledge and abilities in mathematics (linear algebra, calculus).

Usability and Relationship to other Modules

While the graduate level modules "Data Analytics" and "Machine Learning" provide an applied
introduction to the field and are therefore recommended for students with a focus on Software
Engineering or Cybersecurity, this module complements the undergraduate module "Machine
Learning" or can be used independently as a strong introduction to the field of Deep Learning.

Intended Learning Outcomes

No | Competence ILO
1 | Understand Understand core techniques to train neural networks.
2 | Select Select from modern neural network architectures the most

appropriate method (e.g. convolutional and recurrent neural
networks) based on given input data.

3 | Contrast Contrast different recent unsupervised learning methods including
autoencoders and generative adversarial networks.
4 | Describe Describe techniques in reinforcement learning.

Indicative Literature

e Aurélien Géron: Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow, 2nd
Edition, O'Reilly, 2019.

e Charu C. Aggarwal: Neural Networks and Deep Learning — A Textbook, Springer, 2018.

e Christopher M. Bishop: Pattern Recognition and Machine Learning, Springer, 2006.

e lan Goodfellow, Yoshua Bengio, Aaron Courville: Deep Learning, MIT Press, 2016.

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

79

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Deep Learning Written 120 100 45% 1-4
Examination Minutes

Module Achievement

80

7.1.19 Stochastic Modeling and Financial Mathematics

Module Name Stochastic Modeling and Financial
Mathematics
Module Code 2025-CA-S-MMDA-803
Module ECTS 5
Program Owner 2025-MMDA-BSc
(Mathematics, Modeling, and Data
Analytics)
Module Coordinator Prof. Dr. Séren Petrat
Study Semester
Program Semester | Status
2025-MMDA-BSc 3 Mandatory
Mathematics, Modeling, and Data Analytics Elective
2025-PHDS-BSc 3 Mandatory
Physics and Data Science Elective
2025-RIS-BSc 3 Mandatory
Robotics and Intelligent Systems Elective
2025-SDT-BSc 3 Mandatory
Software, Data and Technology Elective
2025-MMDA-BSc 5 Mandatory
Mathematics, Modeling, and Data Analytics Elective
2025-PHDS-BSc 5 Mandatory
Physics and Data Science Elective
2025-RIS-BSc 5 Mandatory
Robotics and Intelligent Systems Elective
2025-SDT-BSc 5 Mandatory
Software, Data and Technology Elective
Student Workload
Lecture | 35
Independent Study | 90
Total Hours | 125
Module Components Number Type cp
Stochastic Modeling and Financial | CA-MMDA-803 Lecture 5
Mathematics

Module Description

This module is a first hands-on introduction to stochastic modeling. Examples will mostly come from
the area of Financial Mathematics, so that this module plays a central role in the education of students
interested in Quantitative Finance and Mathematical Economics. The module is taught as an integrated

81

lecture-lab, where short theoretical units are interspersed with interactive computation and computer
experiments.

Topicsinclude a short introduction to the basic notions of financial mathematics, binomial tree models,
discrete Brownian paths, stochastic integrals and ODEs, Ito's Lemma, Monte-Carlo methods, finite
differences solutions, the Black-Scholes equation, and an introduction to time series analysis,
parameter estimation, and calibration. Towards the end, the Fokker-Planck equation, Ornstein-
Uhlenbeck processes, and nonlinear Stochastic Partial Differential Equations are discussed, and
connections to applicationsin physics and other areas of mathematics are made. Students will program
and explore all basic techniques in a numerical programming environment and apply these algorithms
to real data whenever possible.

Recommended Knowledge

- Good command of Calculus, Linear Algebra, and basic probability basic Python programming
- Review the content of Matrix Algebra & Advanced Calculus I
- Review Python programming

- Pre-install Anaconda Python on your own laptop and know how to edit and start simple Python
programs in a Python IDE like Spyder (which comes bundled as part of Anaconda Python).

Usability and Relationship to other Modules

- This module is part of the core education in Mathematics, Modeling and Data Analytics.

- It is also valuable for students in Physics and Data Science, Computer Science, Data Engineering, RIS,
and ECE, either as part of a minor in Mathematics, or as an elective module.

Intended Learning Outcomes

No | Competence ILO

1 | Apply Apply fundamental concepts of deterministic and stochastic
modeling.

2 | Design Design, conduct, and interpret controlled in-silico scientific
experiments.

3 | Analyze Analyze the basic concepts of financial mathematics and their role
in finance.

4 | Write Write computer code for basic financial calculations, binomial trees,
stochastic differential equations, stochastic integrals and time series
analysis.

5 | Compare Compare their programs and predictions in the context of real data.

6 | Demonstrate Demonstrate the usage of a version control system for collaboration
and the submission of code and reports.

Indicative Literature

e A. Etheridge (2002). A Course in Financial Calculus. Cambridge: Cambridge University Press.

82

e D.J. Higham (2001). An Algorithmic Introduction to Numerical Simulation of Stochastic
Differential Equations, SIAM Rev. 43(3):525-546.

e D.. Higham (2004). Black-Scholes Option Valuation for Scientific Computing Students,
Computing in Science & Engineering 6(6):72-79.

e J.C. Hull (2015). Options, Futures and other Derivatives, 9th edition. New York: Pearson.

e Y.-D. Lyuu (2002). Financial Engineering and Computation - Principles, Mathematics,
Algorithms. Cambridge: Cambridge University Press.

Entry Requirements

Prerequisites 2025-CTMS-MAT-22
Matrix Algebra and Advanced Calculus |

AND

2025-CTMS-MAT-23
Matrix Algebra and Advanced Calculus Il

Co-requisites None
Additional Remarks None

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for

Length Pass
Stochastic Modeling and | Portfolio (Program | 100 45% 1-6
Financial Mathematics Assessment ming

assessm

ents,

project)

Module Achievement

83

7.1.20 Optimization Methods

Module Name Optimization Methods
Module Code 2025-SDT-301
Module ECTS 5
Program Owner 2025-SDT-BSc
(Software, Data and Technology)
Module Coordinator Prof. Dr. Alexander Omelchenko
Study Semester
Program Semester | Status
2025-SDT-BSc 5 Mandatory
Software, Data and Technology Elective
Student Workload
Lecture | 17.5
Tutorial | 35
Independent Study | 52.5
Exam Preparation | 20
Total Hours | 125

Module Components Number Type cp
Optimization Methods Tutorial SDT-301-B Tutorial 2.5
Optimization Methods SDT-301-A Lecture 2.5

Module Description

Optimization methods are a set of mathematical techniques used to find the best solution to a
problem, given a set of constraints. In this module, students will learn about different optimization
techniques such as linear and non-linear programming, gradient-based and heuristic methods, and
their applications in various fields such as engineering, finance, and operations research. They will also
learn about the implementation of optimization algorithms using programming languages such as
Python. This module serves as an introduction to optimization methods and provides students with a
solid foundation for more advanced coursework in the program and the industry.

Content:

- Linear programming: Formulation of LP problems, simplex method, duality theory, sensitivity
analysis, and applications.

- Non-linear programming: Unconstrained optimization, optimization under constraints, optimization
with inequality constraints, optimization with equality constraints, optimization with nonlinear
constraints, and

applications.

84

- Gradient-based optimization methods: Newton and quasi-Newton methods, conjugate gradient and
conjugate direction methods, and optimization of multivariable functions.

- Heuristic optimization methods: Genetic algorithms, simulated annealing, tabu search, and other
metaheuristics.

- Applications of optimization methods: Linear and non-linear programming in engineering, finance,
and operations research.

- Implementation of optimization algorithms using programming languages such as Python.
- Analysis and interpretation of the results of optimization problems.
- Trade-offs and limitations of different optimization methods.

- Communication and presentation of optimization results using mathematical notation and technical
language.

- Ethical and societal implications of optimization methods.

A single assessment type cannot sufficiently test all intended learning outcomes. The program code
evaluates practical skills, whereas the written examination assesses understanding of theoretical
knowledge, core principles, and analytical reasoning.

Recommended Knowledge

Familiarity with basic mathematical concepts such as linear algebra, and calculus. Familiarity with basic
programming concepts and experience with a programming language such as Python.

Usability and Relationship to other Modules

Optimization methods are widely used in fields such as engineering, finance, operations research and
computer science. This module provides a solid foundation in optimization techniques such as linear
and non-linear programming, gradient-based and heuristic methods, and their applications in various
fields. It also covers the implementation of optimization algorithms using programming languages such
as Python, which is essential for students who wish to pursue advanced coursework in related fields
or pursue careers in fields such as engineering, finance, operations research, and computer science.
Understanding optimization methods is also important for making informed decisions in various fields
as well as solving real-world problems.

Intended Learning Outcomes

No | Competence ILO

1 | Understand Understand the concepts and principles of optimization methods,
including linear and non-linear programming, gradient-based and
heuristic methods.

2 | Apply Apply optimization techniques to solve real-world problems in
various fields such as engineering, finance, and operations research.
3 | Understand Understand the trade-offs and limitations of different optimization

methods and select the appropriate method for a given problem.

85

4 | Implement Implement optimization algorithms using programming languages
such as Python.

5 | Analyze Analyze and interpret the results of optimization problems and
make recommendations based on the results.

6 | Communicate | Communicate effectively about optimization methods using
mathematical notation and technical language.

7 | Develop Develop an understanding of the ethical and societal implications of
optimization methods.

Indicative Literature

e Andreu Mas-Colell, Michael D. Whinston, Jerry R. Green: Microeconomic Theory, Oxford
University Press, 1995.

e David G. Luenberger, Yinyu Ye: Linear and Nonlinear Programming, 3rd edition, Springer, 2008.

e Dimitri P. Bertsekas: Nonlinear Programming, 2nd edition, Athena Scientific, 1999.

e John C. Hull: Options, Futures, and Other Derivatives, 9th edition, Prentice Hall, 2014.

e Jorge Nocedal, Stephen J. Wright: Numerical Optimization, 2nd edition, Springer, 2006.

Entry Requirements

Prerequisites 2025-CH-151
Linear Algebra

OR

2025-CTMS-MAT-23
Matrix Algebra and Advanced Calculus Il

2025-CH-230
Programming in C and C++

OR

2025-SDT-105
Industrial Programming with Python

Co-requisites None

Additional Remarks -Linear Algebra OR Matrix Algebra &
Advanced Calculus Il

-Programming in C and C++ OR Industrial
Programming with Python

86

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Optimization Methods | Program Code 50 45% All
Tutorial practical
ILOs of
the
module
Optimization Methods Written 60 50 45% All
Examination Minutes theoretic
al ILOs of
the
module

Module Achievement

87

7.1.21 Natural Language Processing

Module Name Natural Language Processing
Module Code 2025-SDT-305
Module ECTS 5
Program Owner 2025-SDT-BSc
(Software, Data and Technology)
Module Coordinator Prof. Dr. Alexander Omelchenko
Study Semester
Program Semester | Status
2025-SDT-BSc 6 Mandatory
Software, Data and Technology Elective
Student Workload
Lecture | 35
Independent Study | 70
Exam Preparation | 20
Total Hours | 125
Module Components Number Type cp
Natural Language Processing SDT-305-A Lecture 5

Module Description

Students learn the fundamental concepts and techniques of natural language processing (NLP) and
how to apply them to analyze, understand and generate human language. They gain hands-on
experience with popular NLP libraries and frameworks in Python. Students also learn about the key
NLP tasks such as tokenization, part-of-speech tagging, syntactic parsing, named entity recognition,
about the key NLP applications such as text classification, sentiment analysis, machine translation, and
text generation, and about the challenges and limitations of NLP and the state-of-the-art research in
the field.

Content:
- Introduction to NLP, including the history and current state of the field
- Key NLP tasks such as tokenization, part-of-speech tagging, syntactic parsing

- Key NLP applications such as text classification, sentiment analysis, machine translation, and text
generation

- Techniques for working with large text corpora, such as text pre-processing, data cleaning and data
preparation

- Techniques for building NLP systems, such as statistical models, and neural networks

- Techniques for evaluating NLP systems
88

- State-of-the-art research in NLP

- Hands-on experience with popular NLP libraries and frameworks in Python

Recommended Knowledge

- Familiarity with basic mathematical concepts such as linear algebra, and calculus. Familiarity with
basic programming concepts and experience with a programming language and such as Python.

- Familiarity with basics of Deep Learning, Python and Pytorch is recommended.

Usability and Relationship to other Modules

This module will provide students with a solid understanding of the fundamental concepts and
techniques of natural language processing, as well as hands-on experience with popular NLP libraries
and frameworks in Python. The module will prepare students for more advanced coursework in the
program and for professional development in the field of software, data and technology, particularly
in areas such as text mining, information retrieval, and language-based Al.

Intended Learning Outcomes

No | Competence ILO

1 | Understand Understand and apply fundamental concepts and techniques of
natural language processing (NLP) to analyze, understand, and
generate human language.
2 | Identify Identify and perform the key NLP tasks such as tokenization, part-
of-speech tagging, syntactic parsing, semantic role labeling, named
entity recognition, and coreference resolution.

3 | Identify Identify and apply the key NLP applications such as text
classification, sentiment analysis, machine translation, and text
generation.

4 | Evaluate Evaluate NLP systems and understand the challenges and limitations
of NLP.

5 | Understand Understand the state-of-the-art research in NLP, learn how to read
and reproduce modern NLP research papers.

6 | Use Use popular NLP libraries and frameworks in Python to implement

NLP tasks and applications.

Indicative Literature

e Dan Jurafsky and James H. Martin: Speech and Language Processing, 3rd edition, Prentice Hall,
2020.

e Jacob Eisenstein: Natural Language Processing, 1st edition, Cambridge University Press, 2020.

e James H. Martin: Natural Language Processing with GATE, 1st edition, Cambridge University
Press, 2016.

e Yoav Goldberg: Neural Network Methods for Natural Language Processing, 1st edition, Morgan
& Claypool Publishers, 2017.

89

Entry Requirements

Prerequisites

2025-CH-151
Linear Algebra

OR

2025-CTMS-MAT-23

Matrix Algebra and Advanced Calculus Il
2025-CH-230

Programming in C and C++

OR

2025-SDT-105
Industrial Programming with Python

2025-C0-541
Machine Learning

Co-requisites

None

Additional Remarks

-Linear Algebra OR Matrix Algebra &
Advanced Calculus Il

-Programming in C and C++ OR Industrial
Programming with Python

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Natural Language | Written 120 100 45% 1-6
Processing Examination Minutes

Module Achievement

90

7.1.22 Distributed Algorithms

Module Name Distributed Algorithms
Module Code 2025-CA-S-CS-803
Module ECTS 5
Program Owner 2025-CS-BSc
(Computer Science)
Module Coordinator Dr. Kinga Lipskoch
Study Semester
Program Semester | Status
2025-CS-BSc 6 Mandatory
Computer Science Elective
2025-RIS-BSc 6 Mandatory
Robotics and Intelligent Systems Elective
2025-SDT-BSc 6 Mandatory
Software, Data and Technology Elective
Student Workload
Class Attendance | 35
Exam Preparation | 20
Independent Study | 70
Total Hours | 125
Module Components Number Type cp
Distributed Algorithms CA-CS-803 Lecture 5

Module Description

Distributed algorithms are the foundation of modern distributed computing systems. They are
characterized by a lack of knowledge of a global state, a lack of knowledge of a global time, and
inherent non-determinism in their execution. The course introduces basic distributed algorithms using

an abstract formal model, which is centered on the

notion of a transition system. The topics covered

are logical clocks, distributed snapshots, mutual exclusion algorithms, wave algorithms, election
algorithms, reliable broadcast algorithms, and distributed consensus algorithms. Process algebras are
introduced as another formalism to describe distributed and concurrent systems.

The distributed algorithms introduced in this module form the foundation of computing systems that
have to be scalable and fault-tolerant, e.g., large-scale distributed non-standard databases or
distributed file systems. The course is recommended for students interested in the design of scalable

distributed computing systems.

91

Recommended Knowledge

Students should refresh their knowledge of the C, C++ and Python programming language and be able
to solve simple programming problems in C, C++ and Python. Students are expected to have a working
programming environment.

Intended Learning Outcomes

No | Competence ILO

1 | Describe Describe and analyze distributed algorithms using formal methods
such as transition systems.

2 | Explain Explain different algorithms to solve election problem:s.

3 | lllustrate [llustrate the limitations of time to order events and how logical
clocks and vector clocks overcome these limitations.

4 | Apply Apply distributed algorithms to produce consistent snapshots of
distributed computations.

5 | Describe Describe the differences among wave algorithms for different
topologies.

6 | Analyze Analyze and implement distributed consensus algorithms such as
Paxos and Raft.

7 | Use Use a process algebra such as communicating sequential processes
or -calculus to model distributed algorithms.

Indicative Literature

e Maarten van Steen, Andrew S. Tanenbaum: Distributed Systems, 3rd edition, Pearson
Education, 2017.
e Nancy A. Lynch: Distributed Algorithms, Morgan Kaufmann, 1996.

Entry Requirements

Prerequisites 2025-SDT-102
Core Algorithms and Data Structures

OR

2025-CH-231
Algorithms and Data structures

Co-requisites None
Additional Remarks Algorithms and Data Structures OR Core
Algorithms and Data Structures.

92

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Distributed Algorithms Written 120 100 45% 1-7
Examination Minutes

Module Achievement

93

7.1.23 Computer Networks

Module Name Computer Networks
Module Code 2025-CO-564
Module ECTS 5
Program Owner 2025-SDT-BSc
(Software, Data and Technology)
Module Coordinator Prof. Dr. Jiirgen Schénwalder
Study Semester
Program Semester | Status
2025-CS-BSc 5 Mandatory
Computer Science Elective
2025-SDT-BSc 5 Mandatory
Software, Data and Technology Elective
Student Workload
Class Attendance | 35
Independent Study | 70
Exam Preparation | 20
Total Hours | 125
Module Components Number Type cp
Computer Networks CO-564-A Lecture 5

Module Description

Computer networks such as the Internet play a critical role in today's connected world. This module
discusses the technology of Internet services in depth to enable students to understand the core issues
involved in the design of modern computer networks. Fundamental algorithms and principles are
explained in the context of existing protocols as they are used in today's Internet. Students taking this
module should finally understand the technical complexity behind everyday online services such as
Google or YouTube.

Students taking this module will understand how computer networks work and they will be able to
assess communication networks, including aspects such as performance but also robustness and
security. Students will learn that the design of communication networks is not only influenced by
technical constraints but also by the necessity to define common standards, which often requires to
take engineering decisions that reflect non-technical requirements.

Recommended Knowledge

Students are expected to be familiar with the C programming language and to learn basics of higher-
level scripting languages such as Python (the official Python documentation is available on
https://docs.python.org/)

94

Usability and Relationship to other Modules

The module should be taken together with the module Operating Systems, because a significant
portion of the communication technology is implemented at the operating system level. An

understanding of operating system concepts and abstractions will help students to understand how
computer network technology is commonly implemented and made available to applications. The
specialization module Distributed Algorithms discusses algorithms for solving problems commonly

found in distributed systems that use computer networks to exchange information. The module Secure
and Dependable Systems introduces cryptographic mechanisms that can be used to secure
communication over computer networks.

Intended Learning Outcomes

No | Competence ILO
1 | Recall Recall layering principles and the OSI reference model.
2 | Articulate Articulate the organization of the Internet and the organization
involved in providing Internet services.
3 | Describe Describe media access control, flow control, and congestion control
mechanisms
4 | Explain Explain how local area networks differ from global networks.
5 | lllustrate Illustrate how frames are forwarded in local area networks.
6 | Contrast Contrast addressing mechanisms and translations between
addresses used at different layers.
7 | Demonstrate Demonstrate how the Internet network layer forwards packets.
8 | Present Present how routing algorithms and protocols are used to
determine and select routes.
9 | Describe Describe how the Internet transport layer provides different end-to-
end services.
10 | Demonstrate Demonstrate how names are resolved to addresses and vice versa.
11 | Summarize Summarize how application layer protocols send and access
electronic mail or access resources on the world-wide web.
12 | Design Design and implement simple application layer protocols.
13 | Recognize Recognize to which extent computer networks are fragile and
evaluate strategies to cope with the fragility.
14 | Analyze Analyze traffic traces produced by a given computer network.

Indicative Literature

Entry Requirements

Andrew S. Tanenbaum: Computer Networks, 4th Edition, Prentice Hall, 2002.
James F. Kurose, Keith W. Ross: Computer Networking: A Top-Down Approach Featuring the
Internet, 3rd Edition, Addison-Wesley, 2004.

Prerequisites

2025-SDT-102
Core Algorithms and Data Structures

95

2025-CH-231
Algorithms and Data structures

Co-requisites

2025-C0O-562
Operating Systems

Additional Remarks

Algorithms and Data Structures OR Core

Algorithms and Data Structures.

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Computer Networks Written 120 100 45% 1-14
Examination Minutes

Module Achievement

96

7.1.24 Databases Internals

Module Name

Databases Internals

Module Code

2025-SDT-302

Module ECTS

5

Program Owner

2025-SDT-BSc

(Software, Data and Technology)

Module Coordinator

Prof. Dr. Alexander Omelchenko

Study Semester
Program Semester | Status
2025-SDT-BSc 5 Mandatory
Software, Data and Technology Elective
Student Workload
Lecture | 17.5
Self-Organized Teamwork | 35
Independent Study | 52.5
Exam Preparation | 20
Total Hours | 125
Module Components Number Type cp
Databases Internals SDT-302-A Lecture 5

Module Description

This discipline is aimed at gaining skills in building data storage systems and operating with them in an
effective way. During the course, students will get familiar with how a relational database engine works
internally. They will look at the data structures, algorithms and mathematics, which allow for efficient
execution of complex search queries in pretty big databases, and will try to implement a few

components of a toy database.

Content:

- Principles of building relational DBMS

- Some issues of building distributed DBMS

- Columnar DBMS

- Non-classical DBMS types: XML, graph, object
- Elements of multidimensional indexing

- The task of configuring DBMS

97

Recommended Knowledge

- Familiarity with basic concepts of database management systems (DBMS) and SQL.
- Familiarity with basic concepts of data structures and algorithms.

- Familiarity with basic programming concepts and experience with a programming language such as
Kotlin

Usability and Relationship to other Modules

An understanding of the internal workings of databases is essential for students pursuing careers in
computer science, software engineering, and related fields. This module provides a solid foundation in
the internal workings of database management systems, including storage structures, query
processing, and transaction management. It also covers the implementation of databases using
programming languages such as SQL. This knowledge is crucial for students who wish to pursue
advanced coursework in computer science and related fields, as well as for those who wish to pursue
careers in fields such as software development, data management and data administration.

Intended Learning Outcomes

No | Competence ILO

1 | Describe Describe the principles of storing and accessing data records on disk,
performing relational operations such as selections and joins,
building and using indexes appropriately

2 | Apply Apply cost-based optimization techniques to the problems of
choosing the optimal way of query execution
3 | Implement Implement lock-based and timestamp-ordering based schedulers in

transactional systems

Indicative Literature

e C.J. Date: An Introduction to Database Systems, 8th edition, Addison-Wesley, 2004.

e Hector Garcia-Molina, Jeffrey D. Ullman, Jennifer Widom: Database Systems: The Complete
Book, 2nd edition, Prentice Hall 2002.

e Michael Stonebraker, Joseph M. Hellerstein, James Hamilton: Readings in Database Systems,
5th edition, Morgan Kaufmann Publishers, 2018.

e Ramez Elmasri, Shamkant B Navathe: Fundamentals of Database Systems, 7th edition,
Pearson, 2018.

e Thomas Connolly, Carolyn Begg: Database Systems: A Practical Approach to Design,
Implementation and Management, 6th edition, Addison-Wesley, 2016.

Entry Requirements

Prerequisites 2025-SDT-103
Development in JVM Languages

98

2025-SDT-205
Database Fundamentals

Co-requisites None
Additional Remarks None
Assessment and Completion
Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Databases Internals Written 120 100 45% All
Examination Minutes theoretic
al ILOs of
the
module

Module Achievement

99

7.1.25 Integrated Development and IT Operations

Module Name Integrated Development and IT Operations
Module Code 2025-SDT-306
Module ECTS 5
Program Owner 2025-SDT-BSc
(Software, Data and Technology)
Module Coordinator Prof. Dr. Alexander Omelchenko
Study Semester
Program Semester | Status
2025-SDT-BSc 6 Mandatory
Software, Data and Technology Elective
Student Workload
Lecture | 35
Independent Study | 70
Exam Preparation | 20
Total Hours | 125
Module Components Number Type cp
Integrated Development and IT | SDT-306-A Lecture 5
Operations

Module Description

This module provides an introduction to the principles, practices, and tools of DevOps, a set of
methodologies that aim to improve the collaboration, communication and integration between
software development and IT operations teams. In this module, students will learn about the key
concepts and practices of DevOps, including continuous integration, continuous delivery, and
infrastructure as code. They will also learn about the tools and technologies used in DevOps, such as
version control systems, containerization, and cloud computing. This module will give students a solid
understanding of the principles and practices of DevOps and how they can be applied to improve the
software development process and increase efficiency.

Content:

- Key concepts of DevOps, such as continuous integration, continuous delivery, and infrastructure as
code

- Collaboration, communication and integration between software development and IT operations
teams

- Version control systems and their role in DevOps

- Containerization and its usage in DevOps

100

- Cloud computing and its role in DevOps
- Automation and monitoring in DevOps
- Security considerations in DevOps

- Best practices and real-world examples of DevOps in action.

Recommended Knowledge

Students should be familiar with basic concepts of software development, including version control,
testing, and deployment, with basic Linux command line usage and basic administration tasks.

Usability and Relationship to other Modules

DevOps is a rapidly growing field that combines software development and IT operations to improve
the software development process and increase efficiency. This module provides a solid foundation in
the principles, practices, and tools of DevOps, including continuous integration, continuous delivery,
and infrastructure as code. It also covers the tools and technologies used in DevOps, such as version
control systems, containerization, and cloud computing. This knowledge is crucial for students who
wish to pursue careers in software development, IT operations, and related fields. It will also help
students to understand how to improve the software development process and increase efficiency in
their organizations.

Intended Learning Outcomes

No | Competence ILO

1 | Understand Understand the key principles and practices of DevOps and how they
can be applied to software development projects.

2 | Use Use version control systems such as Git to manage and track
changes to code.

3 | Setup Set up and configure continuous integration and delivery pipelines
using tools like Jenkins.

4 | Use Use infrastructure as code tools like Docker and Terraform to
automate the deployment and management of applications and
infrastructure.

5 | Monitor Monitor and log the performance and reliability of applications and
systems using tools such as Splunk and Grafana.

6 | Collaborate Collaborate effectively with development and operations teams to
improve the efficiency and reliability of software delivery.

Indicative Literature

e Gene Kim, Kevin Behr, George Spafford: The Phoenix Project: A Novel About IT DevOps and
Helping Your Business Win IT Revolution, 2013.

e Jez Humble, David Farley: Continuous Delivery: Reliable Software Releases through Build Test
and Deployment Automation, Addison-Wesley, 2010.

101

e Kim, Gene and John Willis. The DevOps Adoption Playbook: A Guide to Adopting DevOps in a
Multi-Speed IT Enterprise. IT Revolution Press, 2018.
e Michael Nygard: Release It!: Design and Deploy Production-Ready Software, Pragmatic

Bookshelf, 2007.

e Patrick Debois: The DevOps Handbook: How to Create World-Class Agility, Reliability, and
Security in Technology Organizations IT Revolution Press, 2016.

Entry Requirements

Prerequisites

2025-C0O-562
Operating Systems

2025-SDT-204
Software Engineering and Design

Co-requisites None
Additional Remarks None
Assessment and Completion
Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass

Integrated Development Written 120 100 45% All

and IT Operations Examination Minutes theoretic
al ILOs of
the
module

Module Achievement

102

7.1.26 Parallel Programming

Module Name Parallel Programming
Module Code 2025-SDT-303
Module ECTS 5
Program Owner 2025-SDT-BSc
(Software, Data and Technology)
Module Coordinator Prof. Dr. Kirill Krinkin
Study Semester
Program Semester | Status
2025-SDT-BSc 5 Mandatory
Software, Data and Technology Elective
Student Workload
Lecture | 35
Independent Study | 70
Exam Preparation | 20
Total Hours | 125
Module Components Number Type cp
Parallel Programming SDT-303-A Lecture 5

Module Description

This module introduces the principles and practices of concurrent programming, including the state-
of-the-art and modern approaches to building concurrent algorithms.

Content:

- Key concepts in concurrent programming, such as the shared-memory model, linearizability
correctness property, and the standard progress guarantees

- Lock-based synchronization
- Basic non-blocking concurrent algorithms, such as the Michael-Scott queue
- Modern concurrent algorithms, such as the Fetch-And-Add-based queues

- Various techniques used in concurrent algorithms, such as helping, descriptors, and flat combining

Recommended Knowledge

- Fundamentals of computer science, including computer architecture, algorithms and data structures,
and programming skills in Java or Kotlin.

- Strong knowledge of basic data structures and algorithms, basic programming skills in Kotlin.

103

Usability and Relationship to other Modules

Nowadays, concurrent programming is crucial for students pursuing careers in computer science,
software engineering, and related fields. This module provides a solid foundation in the principles and

practices of developing concurrent algorithms.

Intended Learning Outcomes

No | Competence ILO
1 | Understand Understand the basic concepts of concurrent programming.
2 | Able Able to develop new concurrent algorithms either using the learned
techniques and approaches or even by introducing new ones.
3 | Able Able to implement existing concurrent algorithm algorithms.
4 | Able Able to reason about the correctness of concurrent algorithms.

Indicative Literature

e Andrew S. Tanenbaum, Marti-n Casado: Computer Networks, 5th edition, Prentice Hall, 2010.

e Grama Ananth et al., Introduction to parallel computing. Pearson Education India, 2003.

e Herlihy, Maurice, Nir Shavit, Victor Luchangco, and Michael Spear. The art of multiprocessor
programming. Newnes, 2020.

e Michael J. Quinn: Parallel Programming in C with MPl and OpenMP, McGraw-Hill, 2003.

e Peter Pacheco: An Introduction to Parallel Programming, Morgan Kaufmann Publishers, 2011.

e William Gropp, Ewing Lusk, Anthony Skjellum: Using MPI: Portable Parallel Programming with
the Message-Passing Interface 2nd edition, MIT Press, 1999.

Entry Requirements

Prerequisites

2025-C0O-562
Operating Systems

2025-SDT-103
Development in JVM Languages

Co-requisites None
Additional Remarks None
Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs

Type or (%) m for
Length Pass

Parallel Programming Written 120 100 45% All

Examination Minutes theoretic
al ILOs of

104

Module Achievement

105

7.1.27 Formal Languages and Parsers

Module Name Formal Languages and Parsers
Module Code 2025-SDT-304
Module ECTS 5
Program Owner 2025-SDT-BSc
(Software, Data and Technology)
Module Coordinator Prof. Dr. Anton Podkopaev
Study Semester
Program Semester | Status
2025-SDT-BSc 5 Mandatory
Software, Data and Technology Elective
Student Workload
Lecture | 17.5
Tutorial | 35
Independent Study | 52.5
Exam Preparation | 20
Total Hours | 125

Module Components Number Type cp
Formal Languages and Parsers SDT-304-A Lecture 2.5
Formal Languages and Parsers Tutorial | SDT-304-B Tutorial 2.5

Module Description

The aim of this discipline is to give students theoretical knowledge and practical skills in the
fundamentals of the theory of formal languages. Considerable attention is paid to issues related to the
theoretical aspects of the syntax and semantics of programming languages, as well as to the creation
of effective algorithms for lexical and syntactic analysis of program code. During the course, students
will:

- learn basic methods of parsing; main approaches used for generating object code.

- be able to describe programming language syntax, using various approaches; construct language
semantics using

different approaches; apply regular expressions for lexical analysis; create algorithms for efficient
syntactic analysis of program code; develop JIT compilers.

- Have gained skills in application of methods for describing the syntax and semantics of programming
languages using various approaches; methods for creating effective algorithms for lexical and syntactic
analysis of program code.

Content:

106

- Deterministic and nondeterministic finite automata

- Deterministic and nondeterministic pushdown automata
- Turing machines and linear-bounded turing machines

- Recursive descent parsing

- Lexer and parser generators

- LL and LR grammars

- Parser expression grammars

- Combinatory parsing

- Regular languages and expressions

- Context-free languages and grammars

- Context-sensitive, recursively enumerable languages and their useful subsets

A single assessment type cannot sufficiently test all intended learning outcomes. The program code
evaluates practical skills, whereas the written examination assesses understanding of theoretical
knowledge, core principles, and analytical reasoning.

Recommended Knowledge

- Familiarity with basic mathematical concepts such as set theory, logic, and discrete mathematics.
Familiarity with basic programming concepts and experience with a programming language such as
Python or Kotlin.

Usability and Relationship to other Modules

Formal languages and automata form the theoretical foundations of computer science and are
essential for

understanding the properties and limits of computation. This module provides a solid foundation in
formal

languages and automata theory, including regular languages, context-free languages, Turing machines,
and

decidability. It also covers the applications of formal languages and automata theory in various fields
such as compilers, parsing, and verification. This knowledge is crucial for students who wish to pursue
advanced coursework in computer science, theoretical computer science, and related fields, as well as
for those who wish

to pursue careers in fields such as software engineering, verification, and natural language processing.

Intended Learning Outcomes

‘ No \ Competence ILO

107

1 | Know Know the basic modern principles and approaches to the
construction of formal languages. Have gained skill in finding
relevant information on formal languages and grammars.

2 | Can Can design a language with syntax which can be effectively parsed
using modern methods. Know the classes of grammars most useful
in practice. Know the theoretical complexity bounds for relevant
classes of grammars.

3 | Know Know the algorithms for syntactic analysis. Generate a lexer and a
parser from the language specification. Effectively implement
recursive descent parsers. Effectively implement parser
combinators.

4 | Know Know the basic methods of working with finite state machines. Be
able to present and justify the choice of methods of working with a
given formal language. Have the skills to describe a given
programming language syntax with regular expressions and
context-free grammars

Indicative Literature

o Dexter Kozen: Automata and Computability, Springer, 1997.

e Harry Lewis, Christos Papadimitriou: Elements of the Theory of Computation, 2nd edition,
Prentice Hall, 1998.

e John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman: Introduction to Automata Theory,
Languages, and Computation, 3rd edition, Addison-Wesley, 2007.

e Martin Davis, Ron Sigal, Elaine J. Weyuker: Computability, Complexity, and Languages:
Fundamentals of Theoretical Computer Science, 2nd edition, Elsevier, 1994.

e Michael Sipser: Introduction to the Theory of Computation, 3rd edition, Cengage Learning,
2013.

Entry Requirements

Prerequisites 2025-CH-230
Programming in C and C++

OR

2025-SDT-105
Industrial Programming with Python

2025-C0O-501

Discrete Mathematics
Co-requisites None
Additional Remarks None

108

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass

Formal Languages and | Written 60 50 45% All

Parsers Examination Minutes theoretic
al ILOs of
the
module

Formal Languages and | Program Code 50 45% All

Parsers Tutorial practical
ILOs of
the
module

Module Achievement

109

7.1.28 Compilers

Module Name Compilers
Module Code 2025-SDT-307
Module ECTS 5

Program Owner

2025-SDT-BSc
(Software, Data and Technology)

Module Coordinator

Prof. Dr. Anton Podkopaev

Study Semester
Program Semester | Status
2025-SDT-BSc 6 Mandatory

Software, Data and Technology Elective
Student Workload

Total Hours \ 0

Module Components Number Type cp
Compilers Project SDT-307-B Project 2.5
Compilers SDT-307-A Lecture 2.5

Module Description

This module provides students with a deep understanding of the principles and techniques used in
compilers, including lexical analysis, syntax analysis, semantic analysis, and code generation, give them
hands-on experience with the implementation of a compiler using a modern compiler construction
toolkit, teach students about the important trade-offs involved in the design and implementation of a

compiler, including performance, code size, and maintainability.

Content:

- Introduction to compilers and the compilation process. Programming languages and machine

architectures. Compiler, interpreter.

- Syntax analysis. Stack machine.

- x86 command system. Code generator, control structures, procedures and functions.

- Dynamic data structures and symbolic expressions.

- Program Runtime

A single assessment type cannot sufficiently test all intended learning outcomes. The program code
evaluates practical skills, whereas the written examination assesses understanding of theoretical

knowledge, core principles, and analytical reasoning.

110

Recommended Knowledge

Students should have a solid understanding of at least one programming language and its syntax before
taking this module. They should review basic data structures and algorithms, as well as math skills,

formal languages and automata, functional programming.

Usability and Relationship to other Modules

This module is suitable for computer science students with a solid understanding of programming and
algorithms, as well as an interest in the inner workings of programming languages and the software
development process. Knowledge of the module may be used to develop and improve the compiler,
to write code generators for specific processors, to design and implement new languages, to improve
code optimization, and to design and implement run-time systems.

Intended Learning Outcomes

No | Competence ILO

1 | Know Know the basic algorithms for parsing code. Implements these
algorithms. Know how to implement a compiler stack machine.

2 | Know Know the basic principles of dynamic data structures. Know the
disciplines of dynamic memory management.

3 | Know Know the basic principles of compiler structure. Be able to organize
and conduct a scientific discussion on issues from the professional
sphere. Know how to discuss a choice of the optimal compiler for
solving practical tasks.

4 | Know Know basic stages of compiler development. Implement all compiler
components.

Indicative Literature

"Compilers: Principles Techniques and Tools" by Alfred V Aho Monica S Lam Ravi Sethi and
Jeffrey D Ullman commonly known as the "Dragon book" published by Addison-Wesley
Professional (1986).

"Compiling with Continuations" by Andrew W Appel published by Cambridge University Press
(1992).

"Engineering a Compiler" by Keith D Cooper and Linda Torczon published by Morgan Kaufmann
(2012).

"Modern Compiler Implementation in Java" by Andrew W Appel published by Cambridge
University Press (1998).

"Principles of Compiler Design" by Alfred V Aho and Jeffrey D Ullman published by Addison-
Wesley Professional (1977).

gccgnuorg - compiler GCC

gccgnuorg/wiki/ListOfCompilerBooks - a list of books on compiler construction

llvmorg - infrastructure LLVM

111

Entry Requirements

Prerequisites

2025-SDT-202
Functional Programming

2025-SDT-304
Formal Languages and Parsers

Co-requisites None
Additional Remarks None
Assessment and Completion
Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Compilers Project Program Code 50 45% All
practical
ILOs of
the
module
Compilers Written 60 50 45% All
Examination Minutes theoretic
al ILOs of
the
module

Module Achievement

112

7.1.29 Semantics of Programming Languages

Module Name Semantics of Programming Languages
Module Code 2025-SDT-308
Module ECTS 5
Program Owner 2025-SDT-BSc
(Software, Data and Technology)
Module Coordinator Prof. Dr. Anton Podkopaev
Study Semester
Program Semester | Status
2025-SDT-BSc 6 Mandatory
Software, Data and Technology Elective

Student Workload

Lecture | 17.5

Tutorial | 17.5

Independent Study | 50
Exam Preparation | 20
Total Hours | 105

Module Components Number Type cp
Semantics of Programming Languages | SDT-308-B Tutorial 2.5
Tutorial
Semantics of Programming Languages | SDT-308-A Lecture 2.5

Module Description

The range of topics covered in this module includes approaches for formally describing semantics of a
programming language as well as methods for proving the correctness of program transformations.

Content:

- Big-step and small-step operational semantics of imperative programming languages,
- Denotational semantics,

- Hoare's Axiomatic Semantics,

- Semantics of languages with multithreading.

A single assessment type cannot sufficiently test all intended learning outcomes. The program code
evaluates practical skills, whereas the written examination assesses understanding of theoretical
knowledge, core principles, and analytical reasoning.

113

Recommended Knowledge

- Understanding of propositional logic.

- To master the module students need the knowledge obtained as a result of studying "Formal
languages and Parsers" and "Functional programming".

Usability and Relationship to other Modules

In terms of career prospects, knowledge of semantics of programming languages is relevant for anyone
working in the field of programming languages, compilers, programming tools, programming
languages design, formal verification, and many other areas. This course is used for developing a
deeper understanding of how programming languages are designed, implemented, and used, for
gaining a solid foundation in formal semantics and type systems, which can be applied to programming
languages and other formal systems.

Intended Learning Outcomes

No | Competence ILO

1 | Know Know the basic styles of programming language semantics:
denotational, operational, axiomatic. Is able to reasonably describe
the chosen style and the advantages of its use for a particular task

2 | Know Know the notion of semantic equivalence of programs and
expressions. Knows variants of definitions and their relationships,
justification of properties of program transformations.

3 | Know Know the concept of operational semantics. Knows how to use big-
step and small-step semantics.

4 | Know Know the formalization of various semantics and proofs of their

properties in Coq as well as verify programs using Hoare logic.

Indicative Literature

"Introduction to the Theory of Programming Languages" by Michel Parigot published by
Cambridge University Press (1992).
"Programming Language Foundations" by Brian A Malloy published by Cambridge University

Press (2018).

"Semantics Engineering with PLT Redex" by Matthew Flatt Robert Bruce Findler and Shriram
Krishnamurthi published by MIT Press (2013).

"Semantics of Programming Languages" by Carl A Gunter published by MIT Press (1992).
"Semantics with Applications: An Appetizer" by Hanne Riis Nielson and Flemming Nielson
published by Springer (2007)

Benjamin Pierce et al Software Foundations (Vol 1 2).

FNielson H-RNielson Semantics with Applications A formal introduction.
Glynn Winskel The Formal Semantics of Programming Languages.
https://softwarefoundations.cis.upenn.edu/

114

Entry Requirements

Prerequisites

2025-SDT-202
Functional Programming

2025-SDT-304
Formal Languages and Parsers

Co-requisites None
Additional Remarks None
Assessment and Completion
Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass

Semantics of | Program Code 50 45% All

Programming Languages practical

Tutorial ILOs of
the
module

Semantics of | Written 60 50 45% All

Programming Languages Examination Minutes theoretic
al ILOs of
the
module

Module Achievement

115

7.1.30 Advanced Discrete Mathematics

Module Name

Advanced Discrete Mathematics

Module Code

2025-SDT-309

Module ECTS

5

Program Owner

2025-SDT-BSc
(Software, Data and Technology)

Module Coordinator

Prof. Dr. Alexander Omelchenko

Study Semester
Program Semester | Status
2025-CS-BSc 5 Mandatory
Computer Science Elective
2025-SDT-BSc 5 Mandatory
Software, Data and Technology Elective
Student Workload
Class Attendance | 35
Exam Preparation | 20
Independent Study | 70
Total Hours | 125
Module Components Number Type cp
Advanced Discrete Mathematics SDT-309-A Lecture 5

Module Description

This module offers an in-depth exploration of advanced topics in discrete mathematics, building upon
foundational knowledge from the introductory module. It primarily focuses on sophisticated methods
and concepts in enumerative combinatorics and graph theory. The module highlights advanced
theoretical frameworks, emphasizes interdisciplinary connections with areas such as algebra,
probability theory, optimization, and theoretical computer science, and introduces applications
relevant to cryptography, algorithm design, network analysis, and data science. The course content is
structured flexibly to accommodate current trends, research interests, and practical applications

within discrete mathematics.

Recommended Knowledge

- Ability to follow and construct mathematical arguments and proofs.

- Basic proficiency in mathematical modeling and algorithmic reasoning.

- It is recommended to have taken the Discrete Mathematics module.

116

Usability and Relationship to other Modules

- This module is highly recommended for students pursuing advanced studies in mathematics or
computer science.

- It serves as an ideal elective for students specializing in theoretical computer science, data science,
or related interdisciplinary areas.

Intended Learning Outcomes

No | Competence ILO

1 | Demonstrate Demonstrate a deep understanding of advanced combinatorial
methods and graph-theoretic concepts.

2 | Apply Apply advanced discrete mathematical tools to model and analyze
complex problems in computer science and related disciplines.

3 | Evaluate Evaluate critically and construct proofs involving advanced discrete
structures.

4 | Develop Develop and refine algorithms that leverage sophisticated discrete
mathematics techniques to solve practical computational problems.

Indicative Literature

B. Bollobas (1998). Modern Graph Theory, Berlin: Springer.

D.B. West (2000). Introduction to Graph Theory, second edition. Prentice Hall.

J.H. van Lint and R.M. Wilson (2001). A Course in Combinatorics, second edition. Cambridge:
Cambridge University Press..

R.P. Stanley (2011). Enumerative Combinatorics, Volume 1 & 2, Cambridge: Cambridge
University Press.

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Advanced Discrete | Written 120 100 45% 1-4
Mathematics Examination Minutes

Module Achievement

117

7.1.1 Internship / Startup and Career Skills

Module Name

Internship / Startup and Career Skills

Module Code 2025-CA-INT-900
Module ECTS 15
Program Owner Career

(Career Module for UG programs)

Module Coordinator

Dr. Tanja Woebs
Clémentine Senicourt

Study Semester

Program Semester | Status

2025-BCCB-BSc 5 Mandatory
Biochemistry and Cell Biology

2025-CBT-BSc 5 Mandatory
Chemistry and Biotechnology

2025-CS-BSc 5 Mandatory
Computer Science

2025-ECE-BSc 5 Mandatory
Electrical and Computer Engineering

2025-ESSMER-BSc 5 Mandatory
Earth Sciences and Sustainable Management of

Environmental Resources

2025-F-ACS-BSc 5 Mandatory
Applied Computer Science

2025-IBA-BA 5 Mandatory
International Business Administration

2025-IRPH-BA 5 Mandatory
International Relations: Politics and History

2025-ISCP-BA 5 Mandatory
Integrated Social and Cognitive Psychology

2025-MCCB-BSc 5 Mandatory
Medicinal Chemistry and Chemical Biology

2025-MDDA-BSc 5 Mandatory
Management, Decisions and Data Analytics

2025-MMDA-BSc 5 Mandatory
Mathematics, Modeling, and Data Analytics

2025-PHDS-BSc 5 Mandatory
Physics and Data Science

2025-BCCB-BSc 6 Mandatory
Biochemistry and Cell Biology

2025-CBT-BSc 6 Mandatory
Chemistry and Biotechnology

2025-CS-BSc 6 Mandatory
Computer Science

2025-ECE-BSc 6 Mandatory

118

Electrical and Computer Engineering

2025-ESSMER-BSc 6 Mandatory
Earth Sciences and Sustainable Management of

Environmental Resources

2025-GEM-BA 6 Mandatory
Global Economics and Management

2025-IBA-BA 6 Mandatory
International Business Administration

2025-IRPH-BA 6 Mandatory
International Relations: Politics and History

2025-ISCP-BA 6 Mandatory
Integrated Social and Cognitive Psychology

2025-MCCB-BSc 6 Mandatory
Medicinal Chemistry and Chemical Biology

2025-MMDA-BSc 6 Mandatory
Mathematics, Modeling, and Data Analytics

2025-PHDS-BSc 6 Mandatory
Physics and Data Science

2025-RIS-BSc 6 Mandatory
Robotics and Intelligent Systems

2025-S-ACS-BSc 6 Mandatory
Applied Computer Science

2025-SDT-BSc 6 Mandatory
Software, Data and Technology

Student Workload

Internship | 308
Internship Event | 2
Independent Study | 32
Interactive Learning | 33
Total Hours | 375
Module Components Number Type cp
Internship CA-INT-900-0 Internship 15

Module Description

The aims of the internship module are reflection, application, orientation, and development: for
students to reflect on their interests, knowledge, skills, their role in society, the relevance of their

major subject to society, to apply these skills and this knowledge in real life whilst getting practical

experience, to find a professional orientation, and to develop their personality and in their career. This

module supports the programs’ aims of preparing students for gainful, qualified employment and the

development of their personality.

119

The full-time internship must be related to the students’ major area of study and extends lasts a
minimum of two consecutive months, normally scheduled just before the 5th semester, with the
internship event and submission of the internship report in the 5th semester. Upon approval by the
SPC and SCS, the internship may take place at other times, such as before teaching starts in the 3rd
semester or after teaching finishes in the 6th semester. The Study Program Coordinator or their faculty
delegate approves the intended internship a priori by reviewing the tasks in either the Internship
Contract or Internship Confirmation from the respective internship institution or company. Further
regulations as set out in the Policies for Bachelor Studies apply.

Students will be gradually prepared for the internship in semesters 1 to 4 through a series of
mandatory information sessions, seminars, and career events.

The purpose of the Career Services Information Sessions is to provide all students with basic facts
about the job market in general, and especially in Germany and the EU, and services provided by the
Student Career Support.

In the Career Skills Seminars, students will learn how to engage in the internship/job search, how to
create a competitive application (CV, Cover Letter, etc.), and how to successfully conduct themselves
at job interviews and/or assessment centers. In addition to these mandatory sections, students can
customize their skill set regarding application challenges and their intended career path in elective
seminars.

Finally, during the Career Events organized by the Career Service Center (e.g. the annual Constructor
Career Fair and single employer events on and off campus), students will have the opportunity to apply
their acquired job market skills in an actual internship/job search situation and to gain their desired
internship in a high-quality environment and with excellent employers.

As an alternative to the full-time internship, students can apply for the StartUp Option. Following the
same schedule as the full-time internship, the StartUp Option allows students who are particularly
interested in founding their own company to focus on the development of their business plan over a
period of two consecutive months. Participation in the StartUp Option depends on a successful
presentation of the student’s initial StartUp idea. This presentation will be held at the beginning of the
4th semester. A jury of faculty members will judge the student’s potential to realize their idea and
approve the participation of the students. The StartUp Option is supervised by the Faculty StartUp
Coordinator. At the end of StartUp Option, students submit their business plan. Further regulations as
outlined in the Policies for Bachelor Studies apply.

The concluding Internship Event will be conducted within each study program (or a cluster of related
study programs) and will formally conclude the module by providing students the opportunity to
present on their internships and reflect on the lessons learned within their major area of study. The
purpose of this event is not only to self-reflect on the whole internship process, but also to create a
professional network within the academic community, especially by entering the Alumni Network after
graduation. It is recommended that all three classes (years) of the same major are present at this event
to enable networking between older and younger students and to create an educational environment
for younger students to observe the “lessons learned” from the diverse internships of their elder fellow
students.

Recommended Knowledge

- Information provided on CSC

120

- Major specific knowledge and skills

- Please see the section “Knowledge Center” at JobTeaser Career Center for information on Career
Skills seminar and workshop offers and for online tutorials on the job market preparation and the

application process. For more information, please see

life/career-services

https://constructor.university/student-

- Participating in the internship events of earlier classes

Usability and Relationship to other Modules

This module applies skills and knowledge acquired in previous modules to a professional environment
and provides an opportunity to reflect on their relevance in employment and society. It may lead to
thesis topics.

Intended Learning Outcomes

No

Competence

ILO

1

Describe

Describe the scope and the functions of the employment market and
personal career development.

Apply

Apply professional, personal, and career-related skills for the
modern labor market, including self-organization, initiative and
responsibility, communication, intercultural sensitivity, team and
leadership skills, etc.

Manage

Manage their own career orientation processes independently by
identifying personal interests, selecting appropriate internship
locations or start-up opportunities, conducting interviews,
succeeding at pitches or assessment centers, negotiating related
employment, managing their funding or support conditions (such as
salary, contract, funding, supplies, work space, etc.).

Apply

Apply specialist skills and knowledge acquired during their studies
to solve problems in a professional environment and reflect on their
relevance in employment and society.

Justify

Justify professional decisions based on theoretical knowledge and
academic methods.

Reflect

Reflect on their professional conduct in the context of the
expectations of and consequences for employers and their society.

Reflect

Reflect on and set their own targets for the further development of
their knowledge, skills, interests, and values.

Establish

Establish and expand their contacts with potential employers or
business partners, and possibly other students and alumni, to build
their own professional network to create employment opportunities
in the future.

Discuss

Discuss observations and reflections in a professional network.

121

Indicative Literature

Entry Requirements

Prerequisites

2025-CA-INT-900
Internship / Startup and Career Skills
At least 15 CP from CORE modules in the

major

Co-requisites None

Additional Remarks None

Assessment and Completion
Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for

Length Pass

Internship Project Report | 3500 100 Pass/Fail | 1-9
words

Module Achievement

122

7.1.1 Bachelor Thesis and Seminar SDT

Module Name Bachelor Thesis and Seminar SDT
Module Code 2025-SDT-400
Module ECTS 15
Program Owner 2025-SDT-BSc

(Software, Data and Technology)
Module Coordinator Study Program Chair
Study Semester
Program Semester | Status
2025-SDT-BSc 6 Mandatory

Software, Data and Technology

Student Workload
Independent Study/Laboratory Work | 350
Seminar | 25
Total Hours | 375

Module Components Number Type cp
Thesis Seminar SDT SDT-400-T Seminar 3
Thesis SDT SDT-400-S Thesis 12

Module Description

This module is a mandatory graduation requirement for all undergraduate students to demonstrate
their ability to address a problem from their respective major subject independently using
academic/scientific methods within a set time frame. Although supervised, this module requires
students to be able to work independently and systematically and set their own goals in exchange for
the opportunity to explore a topic that excites and interests them personally and that a faculty member
is interested in supervising. Within this module, students apply their acquired knowledge about their
major discipline and their learned skills and methods for conducting research, ranging from the
identification of suitable (short-term) research projects, preparatory literature searches, the
realization of discipline-specific research, and the documentation, discussion, interpretation, and
communication of research results.

This module consists of two components, an independent thesis and an accompanying seminar. The
thesis component must be supervised by a Constructor University faculty member and requires short-
term research work, the results of which must be documented in a comprehensive written thesis
including an introduction, a justification of the methods, results, a discussion of the results, and a
conclusion. The seminar provides students with the opportunity to practice their ability to present,
discuss, and justify their and other studentsa€™ approaches, methods, and results at various stages of
their research in order to improve their academic writing, receive and reflect on formative feedback,
and therefore grow personally and professionally.

123

Recommended Knowledge

- Identify an area or a topic of interest and discuss this with your prospective supervisor in a timely
manner.

- Create a research proposal including a research plan to ensure timely submission.
- Ensure you possess all required technical research skills or are able to acquire them on time.

- Review the University's Code of Academic Integrity and Guidelines to Ensure Good Academic Practice.

Usability and Relationship to other Modules

This module builds on all previous modules in the undergraduate program. Students apply the
knowledge, skills, and competencies they have acquired and practiced during their studies, including
research methods and their ability to acquire additional skills independently as and if required.

Intended Learning Outcomes

No | Competence ILO

1 | Plan Plan and organize advanced learning processes independently.

2 | Design Design and implement appropriate research methods, taking full
account of the range of alternative techniques and approaches.

3 | Collect Collect, assess, and interpret relevant information.

4 | Draw Draw scientifically-founded conclusions that consider social,
scientific, and ethical factors.

5 | Apply Apply their knowledge and understanding to a context of their
choice.

6 | Develop Develop, formulate, and advance solutions to problems and debates
within their subject area, and defend these through argument.

7 | Discuss Discuss information, ideas, problems, and solutions with specialists
and non-specialists.

Indicative Literature

Entry Requirements

Prerequisites 2025-SDT-400

Bachelor Thesis and Seminar SDT

Students must have taken and successfully
passed a total of at least 30 CP from
advanced modules, and of those, at least 20
CP from advanced modules in the major.

Co-requisites None
Additional Remarks None

124

Assessment and Completion

Module Component

Thesis SDT

Examination

Type

Thesis

Duration | Weight
or (%)
Length

Approx. | 80
6.000 -
8.000

words

(15 - 25
pages),

excludin
g front
and back
matter.

Minimu

m

Pass

45%

ILOs

All ILOs,
mainly 1-
6.

Module Achievement

125

8 Constructor Track Modules ‘

8.1 Methods Modules

8.1.1 Elements of Linear Algebra

Module Name Elements of Linear Algebra
Module Code 2025-CTMS-MAT-24
Module ECTS 5
Program Owner 2025-CT
(CONSTRUCTOR Track Area)

Module Coordinator Prof. Dr. Keivan Mallahi Karai
Study Semester
Program Semester | Status
2025-CS-BSc 1 Mandatory

Computer Science Elective
2025-F-ACS-BSc 1 Mandatory

Applied Computer Science Elective
2025-RIS-BSc 1 Mandatory

Robotics and Intelligent Systems Elective
2025-SDT-BSc 1 Mandatory

Software, Data and Technology Elective
Student Workload

Lecture | 35
Independent Study | 90
Total Hours | 125

Module Components Number Type cp
Elements of Linear Algebra CTMS-24 Lecture 5

Module Description

This module is the first in a sequence introducing mathematical methods at the university level in a
form relevant for study and research in the quantitative natural sciences, engineering, Computer
Science. The emphasis in these modules is on training

operational skills and recognizing mathematical structures in a problem context. Mathematical rigor is
used where appropriate. However, a full axiomatic treatment of the subject is provided in the first-
year modules “Analysis” and “Linear Algebra”.

The lecture comprises the following topics:

- Review of elementary analytic geometry
126

- Vector spaces, linear independence, bases, coordinates

- Matrices and matrix algebra

- Solving linear systems by Gauss elimination, structure of general solution
- LU decomposition and matrix inverse

- Linear maps and connection to matrices

- Determinant

- Eigenvalues and eigenvectors

- Hermitian and skew-Hermitian matrices

- Orthonormal bases, Gram-Schmidt orthonormalization and QR decomposition
- Fourier transform

- Singular value decomposition

- Principal Component Analysis and best low rank approximations

Recommended Knowledge

- Knowledge of Pre-Calculus at High School level (Functions, inverse functions, sets, real numbers,
trigonometric functions, parametric equations, tangent lines, graphs, elementary methods for solving
systems of linear and nonlinear equations)

- Knowledge of Analytic Geometry at High School level (vectors, lines, planes, reflection, rotation,
translation, dot product, cross product, normal vector, polar coordinates)

- Review all of higher-level High School Mathematics, in particular the topics explicitly named in “Entry
Requirements — Knowledge, Ability, or Skills” above.

Usability and Relationship to other Modules

A rigorous treatment of this topic is provided in the module “Linear Algebra.”

Intended Learning Outcomes

No | Competence ILO

1 | Apply Apply the methods described in the content section of this module
description to the extent that they can solve standard textbook
problems reliably and with confidence.

2 | Recognize Recognize the mathematical structures in an unfamiliar context and
translate them into a mathematical problem statement.
3 | Recognize Recognize common mathematical terminology and concepts used in

textbooks and research papers in computer science, engineering,
and mathematics to the extent that they fall into the content
categories covered in this module.

127

4 | Prove

Prove results independently which are direct consequences of those
proved in the lectures.

5 | Understand

Understand and use fundamental mathematical terminology to

communicate mathematical ideas.

Indicative Literature

e Gilbert Strang, Introduction to Linear Algebra, Fifth Edition (2016).

e S.A. Leduc Linear Algebra. Hoboken: Wiley (2003).

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None
Assessment and Completion
Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Elements of Linear | Written 120 100 45% 1-5
Algebra Examination Minutes

Module Achievement

128

8.1.2 Elements of Calculus

Module Name Elements of Calculus
Module Code 2025-CTMS-MAT-25
Module ECTS 5
Program Owner 2025-CT
(CONSTRUCTOR Track Area)

Module Coordinator Prof. Dr. Keivan Mallahi Karai
Study Semester
Program Semester | Status
2025-CS-BSc 2 Mandatory

Computer Science Elective
2025-F-ACS-BSc 2 Mandatory

Applied Computer Science Elective
2025-RIS-BSc 2 Mandatory

Robotics and Intelligent Systems Elective
2025-SDT-BSc 2 Mandatory

Software, Data and Technology Elective
Student Workload

Lecture | 35
Independent Study | 90
Total Hours | 125

Module Components Number Type cp
Elements of Calculus CTMS-25 Lecture 5

Module Description

This module is the second in a sequence introducing mathematical methods at the university level in
a form relevant for study and research in the quantitative natural sciences, engineering, Computer
Science. The emphasis in these modules is on training operational skills and recognizing mathematical

structures in a problem context. Mathematical rigor is used where appropriate. However, a full
axiomatic treatment of the subject is provided in the first-year modules “Analysis”.

The lecture comprises the following topics:

- Sets, basic operations, and relations

- Functions, basic operations, compositions of functions, graphs of functions

- Brief introduction to real and complex numbers
- Limits for sequences and functions

- Continuity

129

- Derivatives of functions and its geometric interpretations

- Computing derivatives: linearity, product rule, chain rule

- Applications of derivatives, optimization for one-variable functions

- Introduction to Integration and the Fundamental Theorem of Calculus

- Differential equations, modeling simple dynamical systems

- Discrete derivative, summations, difference equations

- Functions of several variables, representations using graphs and level curves
- Basic ideas of multivariable calculus

- Partial derivatives and directional derivatives, total derivative

- Optimization in several variables, gradient descent, Lagrange multipliers
- Ordinary differential equations with several variables, simple examples
- Linear constant-coefficient ordinary differential equations

- Fourier series and their applications

Recommended Knowledge

- Knowledge of Pre-Calculus at High School level (Functions, inverse functions, sets, real numbers,
polynomials, rational functions, trigonometric functions, logarithm and exponential function,
parametric equations, tangent lines, graphs.)

- Knowledge of Analytic Geometry at High School level (vectors, lines, planes, reflection, rotation,
translation, dot product, cross product, normal vector, polar coordinates)

- Some familiarity with elementary Calculus (limits, derivative) is helpful, but not strictly required.

- Review the content of Linear Algebra

Usability and Relationship to other Modules

A rigorous treatment of this topic is provided in the module “Analysis”

Intended Learning Outcomes

No | Competence ILO

1 | Apply Apply the methods described in the content section of this module
description to the extent that they can solve standard textbook
problems reliably and with confidence.

2 | Recognize Recognize the mathematical structures in an unfamiliar context and
translate them into a mathematical problem statement.
3 | Recognize Recognize common mathematical terminology and concepts used in

textbooks and research papers in computer science, engineering,

130

and mathematics to the extent that they fall into the content
categories covered in this module.

4 | Prove

Prove results independently which are direct consequences of those
proved in the lectures.

5 | Understand

Understand and use fundamental mathematical terminology to
communicate mathematical ideas.

Indicative Literature

e James Stewart, Calculus: Early Transcendentals, (2015).
e S.I. Grossman, Calculus of one variable, 2nd edition, (2014).

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Elements of Calculus Written 120 100 45% 1-5
Examination Minutes

Module Achievement

131

8.1.3 Matrix Algebra and Advanced Calculus |

Module Name Matrix Algebra and Advanced Calculus |
Module Code 2025-CTMS-MAT-22
Module ECTS 5
Program Owner 2025-CT
(CONSTRUCTOR Track Area)
Module Coordinator Prof. Dr. Keivan Mallahi Karai
Study Semester
Program Semester | Status
2025-CS-BSc 1 Mandatory
Computer Science Elective
2025-ECE-BSc 1 Mandatory
Electrical and Computer Engineering
2025-PHDS-BSc 1 Mandatory
Physics and Data Science
2025-RIS-BSc 1 Mandatory
Robotics and Intelligent Systems Elective
2025-SDT-BSc 1 Mandatory
Software, Data and Technology Elective
2025-PHDS-BSc 2 Mandatory
Physics and Data Science
Student Workload
Independent Study | 90
Lecture | 35
Total Hours | 125
Module Components Number Type cp
Matrix Algebra and Advanced Calculus | CTMS-22 Lecture 5
|

Module Description

This module is the first in a sequence including advanced mathematical methods at the university level
at a level higher than the course Calculus and Linear Algebra I.

The course comprises the following topics:

- Number systems, complex numbers

- The concept of function, composition of functions, inverse functions

- Basic ideas of calculus: Archimedes to Newton

132

- The notion of limit for functions and sequences and series

- Continuous function and their basic properties

- Derivatives: rate of change, velocity and applications

- Mean value theorem and estimation, maxima and minima, convex functions
- Integration, change of variables, Fundamental Theorem of Calculus

- Applications of the integral: work, area, average value, centre of mass

- Improper Integrals, Mean value theorem for integrals

- Taylor series

- Ordinary differential equations, examples, solving first order linear differential equations
- Basic ideas of numerical analysis, Newton's method, asymptotic formulas

- Review of elementary analytic geometry, lines, conics

- Vector spaces, linear independence, bases, coordinates

- Linear maps, matrices and their algebra, matrix inverses

- Gaussian elimination, solution space

- Determinants

Recommended Knowledge

- Knowledge of pre-calculus ideas (sets and functions, elementary functions, polynomials) and analytic
geometry (equations of lines, systems of linear equations, dot product, polar coordinates) at High
School level. Familiarity with ideas of calculus is helpful.

- Review of high school mathematics.

Usability and Relationship to other Modules

- Calculus and Linear Algebra | can be substituted with this module after consulting academic advisor

- A more advanced treatment of multi-variable Calculus, in particular, its applications in Physics and
Mathematics, is provided in the second-semester module "Applied Mathematics". All students taking
"Applied Mathematics" are expected to take this module as well as the module topics are closely
synchronized.

- The second-semester module "Linear Algebra" provides a complete proof-driven development of the
theory of Linear Algebra. Diagonalization is covered more abstractly, with particular emphasis on
degenerate cases. The Jordan normal form is also covered in "Linear Algebra", not in this module.

Intended Learning Outcomes

‘ No \ Competence ILO

133

Apply

Apply the methods described in the content section of this module
description to the extent that they can

Solve Solve standard text-book problems reliably and with confidence

Recognize Recognize the mathematical structures in an unfamiliar context and
translate them into a mathematical problem statement

Recognize Recognize common mathematical terminology used in textbooks

and research papers in the guantitative sciences, engineering, and
mathematics to the extent that they fall into the content categories
covered in this module

Indicative Literature

e Advanced Calculus, G.B. Folland (Pearson 2002).

e K. Riley, M. Hobson, S. Bence (Cambridge University Press 2006).

e Linear Algebra, S. Lang (Springer Verlag 1986).
e Mathematical Methods for Physics and Engineering

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None
Assessment and Completion
Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Matrix Algebra and | Written 120 100 45% 1-4
Advanced Calculus | Examination Minutes

Module Achievement

134

8.1.4 Matrix Algebra and Advanced Calculus Il

Module Name Matrix Algebra and Advanced Calculus Il
Module Code 2025-CTMS-MAT-23
Module ECTS 5
Program Owner 2025-CT
(CONSTRUCTOR Track Area)
Module Coordinator Prof. Dr. Keivan Mallahi Karai
Study Semester
Program Semester | Status
2025-CS-BSc 2 Mandatory
Computer Science Elective
2025-ECE-BSc 2 Mandatory
Electrical and Computer Engineering
2025-PHDS-BSc 2 Mandatory
Physics and Data Science
2025-RIS-BSc 2 Mandatory
Robotics and Intelligent Systems Elective
2025-SDT-BSc 2 Mandatory
Software, Data and Technology Elective
Student Workload
Independent Study | 90
Lecture | 35
Total Hours | 125
Module Components Number Type cp
Matrix Algebra and Advanced Calculus | CTMS-23 Lecture 5
Il

Module Description

- Coordinate systems, functions of several variables, level curves, polar coordinates

- Continuity, directional derivatives, partial derivatives, chain rule (version I)

- derivative as a matrix, chain rule (version Il), tangent planes and linear approximation, gradient,

repeated partial derivatives

- Minima and Maxima of functions of several variables, Lagrange multipliers

- Multiple integrals, iterated integrals, integration over standard regions, change of variables formula

- Vector fields, parametric representation of curves, line integrals and arc length, conservative vector

fields

135

- Potentials, Green's theorem in the plane

- Parametric representation of surfaces

- Vector products and normal surface integrals

- Integral theorems by Stokes and Gauss, physical interpretations

- Basics of differential forms and their calculus, connection to gradient, curl, and divergence
- Eigenvalues and eigenvectors, diagonalisable matrices

- Inner product spaces, Hermitian and unitary matrices

- Matrix factorizations: Singular value decomposition with applications, LU decomposition, QR
decomposition

- Linear constant-coefficient ordinary differential equations, application to mechanical vibrations and
electrical

oscillations

- Periodic functions, Fourier series

Recommended Knowledge

Review the content of Matrix Algebra and Advanced Calculus |

Usability and Relationship to other Modules

- This module can substitute Calculus and Linear Algebra Il after consulting academic advisor.
- Methods of this course are applied in the module Mathematical Modeling.

- The second-semester module Linear Algebra provides a more rigorous and more abstract treatment
of some of the notions discussed in this module.

Intended Learning Outcomes

No | Competence ILO

1 | Understand Understand the definitions of continuity, derivative of a function as
a linear transformation, multivariable integrals, eigenvalues and
eigenvectors and associated notions.

2 | Apply Apply the methods described in the content section of this module
description to the extent that they can.

3 | Evaluate Evaluate multivariable integrals using definitions or by applying
Green and Stokes theorem.

4 | Evaluate Evaluate various decompositions of matrices.

5 | Solve Solve standard text-book problems reliably and with confidence.

6 | Recognize Recognize the mathematical structures in an unfamiliar context and
translate them into a mathematical problem statement.

7 | Recognize Recognize common mathematical terminology used in textbooks
and research papers in the quantitative sciences, engineering, and

136

mathematics to the extent that they fall into the content categories

covered in this module.

Indicative Literature

e Advanced Calculus GB Folland (Pearson 2002).

e Approach JH Hubbard B Hubbard (Pearson 1998).
e K Riley M Hobson S Bence (Cambridge University Press 2006).
e Linear Algebra S Lang (Springer Verlag 1986).

e Mathematical Methods for Physics and Engineering.
e Vector Calculus Linear Algebra and Differential Forms: A Unified.

Entry Requirements

Prerequisites

2025-CTMS-MAT-22

Matrix Algebra and Advanced Calculus |

Co-requisites None
Additional Remarks None
Assessment and Completion
Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Matrix Algebra and | Written 120 100 45% 1-7
Advanced Calculus Il Examination Minutes

Module Achievement

137

8.1.5 Probability and Random Processes

Module Name

Probability and Random Processes

Module Code 2025-CTMS-MAT-12
Module ECTS 5
Program Owner 2025-CT

(CONSTRUCTOR Track Area)

Module Coordinator

Prof. Dr. Keivan Mallahi Karai

Study Semester

Program Semester | Status

2025-CS-BSc 3 Mandatory
Computer Science

2025-ECE-BSc 3 Mandatory
Electrical and Computer Engineering

2025-F-ACS-BSc 3 Mandatory
Applied Computer Science

2025-MMDA-BSc 3 Mandatory
Mathematics, Modeling, and Data Analytics

2025-PHDS-BSc 3 Mandatory
Physics and Data Science

2025-RIS-BSc 3 Mandatory
Robotics and Intelligent Systems

2025-SDT-BSc 3 Mandatory
Software, Data and Technology

2025-S-ACS-BSc 4 Mandatory
Applied Computer Science

Student Workload

Independent Study | 90
Lecture | 35
Total Hours | 125
Module Components Number Type cp
Probability and random processes CTMS-12 Lecture 5

Module Description

This module aims to provide a basic knowledge of probability theory and random processes suitable

for students in engineering, Computer Science, and Mathematics. The module provides students with
basic skills needed for formulating real-world problems dealing with randomness and probability in
mathematical language, and methods for applying a toolkit to solve these problems. Mathematical

rigor is used where appropriate. A more advanced treatment of the subject is deferred to the third-

year module Stochastic Processes.

138

The lecture comprises the following topics:

- Brief review of number systems, elementary functions, and their graphs
- Outcomes, events and sample space

- Combinatorial probability

- Conditional probability and Bayes’ formula

- Binomials and Poisson-Approximation

- Random Variables, distribution and density functions

- Independence of random variables

- Conditional Distributions and Densities

- Transformation of random variables

- Joint distribution of random variables and their transformations

- Expected Values and Moments, Covariance

- High dimensional probability: Chebyshev and Chernoff bounds

- Moment-Generating Functions and Characteristic Functions

- The Central limit theorem

- Random Vectors and Moments, Covariance matrix, Decorrelation

- Multivariate normal distribution. Markov chains, stationary distributions.

Recommended Knowledge

- Review all of the first-year calculus and linear algebra modules as indicated in "Entry Requirements -
Knowledge, Ability, or Skills" above.

- Knowledge of calculus at the level of a first year calculus module (differentiation, integration with
one and several variables, trigonometric functions, logarithms and exponential functions).

- Knowledge of linear algebra at the level of a first year university module (eigenvalues and
eigenvectors, diagonalization of matrices).

- Some familiarity with elementary probability theory at the high school level.

Usability and Relationship to other Modules

Students taking this module are expected to be familiar with basic tools from calculus and linear
algebra.

Intended Learning Outcomes

\ No \ Competence ILO

139

1 | Command Command the methods described in the content section of this
module description to the extent that they can solve standard text-
book problems reliably and with confidence.

2 | Recognize Recognize the probabilistic structures in an unfamiliar context and
translate them into a mathematical problem statement.
3 | Recognize Recognize common mathematical terminology used in textbooks

and research papers in the quantitative sciences, engineering, and
mathematics to the extent that they fall into the content categories
covered in this module.

Indicative Literature

e J. Hwang and J.K. Blitzstein (2019). Introduction to Probability, second edition. London:
Chapman & Hall.

e S. Ghahramani. Fundamentals of Probability with Stochastic Processes, fourth edition. Upper
Saddle River: Prentice Hall.

Entry Requirements

Prerequisites 2025-CTMS-MAT-22
Matrix Algebra and Advanced Calculus |

OR

2025-CTMS-MAT-24

Elements of Linear Algebra
2025-CTMS-MAT-23

Matrix Algebra and Advanced Calculus Il

OR

2025-CTMS-MAT-25
Elements of Calculus

Co-requisites None
Additional Remarks None

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass

140

Probability and random
processes

Written
Examination

120
Minutes

100

45%

1-3

Module Achievement

141

8.1.6 Statistics and Data Analytics

Module Name

Statistics and Data Analytics

Module Code 2025-CTMS-MET-21
Module ECTS 5
Program Owner 2025-CT

(CONSTRUCTOR Track Area)

Module Coordinator

Dr. lvan Ovsyannikov

Study Semester
Program Semester | Status
2025-CS-BSc 4 Mandatory
Computer Science Elective
2025-MMDA-BSc 4 Mandatory
Mathematics, Modeling, and Data Analytics
2025-PHDS-BSc 4 Mandatory
Physics and Data Science
2025-SDT-BSc 4 Mandatory
Software, Data and Technology
Student Workload
Independent Study | 105
Lecture | 35
Total Hours | 140
Module Components Number Type cp
Statistics and Data Analytics CTMS-21 Lecture 5

Module Description

The aim of this module is to introduce students to basic ideas and methods used for analysing large
and complex datasets. While the first modern statistical toolkits date back to the beginning of the
twentieth century, the advent of the computer age and the availability of fast computations has led to

dramatic changes in the field.

Statistical models have found applications in many areas ranging from business and healthcare to
astrophysics and speech recognition. Such models are used to make predictions, draw inferences and

support policy decisions in all these areas.

This module draws on students' knowledge from the module Probability and Random Processes to
help them build and analyze statistical models, ranging in their degree of sophistication from basis to

more advanced ones, and apply them to real-world situations.

The module will cover the following topics:

- Classical statistics: descriptive and inferential modes, parameter estimation and hypothesis testing.

142

- Linear regressions, multiple linear regressions

- Classification: logistic regression, generative models for classification

- Resampling methods, bootstrap

- Non-linear models, splines

- Support vector machines

- Basic ideas of deep learning

Recommended Knowledge

- Good command of basic probability

- Recap Probability and Random Processes

Usability and Relationship to other Modules

- This module is part of the core education in Mathematics, Modeling and Data Analytics and Physics
and Data Science.

- It is also valuable for students in Computer Science, RIS, and ECE, either as part of a minor in
Mathematics, or as an elective module.

Intended Learning Outcomes

No | Competence ILO

1 | Formulate Formulate statistical models for real world problems.

2 | Describe Describe statistical methods for analyzing real world problems.

3 | Explain Explain the importance of linear and non-linear models.

4 | Recognize Recognize different solution methods for modeling problem:s.

5 | lllustrate Illustrate the use of regressions, resampling, support vector
machines and other statistical tools to describe phenomena in the
real world.

6 | Describe Describe basic ideas of deep learning.

Indicative Literature

Entry Requirements

James, Witten, Hastie, Tibshirani. An introduction to Statistical learning, second edition.

Prerequisites

2025-CTMS-MAT-12
Probability and Random Processes

Co-requisites

None

Additional Remarks

None

143

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Statistics and Data | Written 120 100 45% 1-6
Analytics Examination Minutes

Module Achievement

144

8.2 New Skills Modules

8.2.1 Logic (perspective |)

Module Name

Logic (perspective 1)

Module Code 2025-CTNS-NSK-01
Module ECTS 2.5
Program Owner 2025-CT

(CONSTRUCTOR Track Area)

Module Coordinator

Prof. Dr. Jules Coleman

Study Semester
Program Semester | Status
2025-BCCB-BSc 3 Mandatory
Biochemistry and Cell Biology Elective
2025-CBT-BSc 3 Mandatory
Chemistry and Biotechnology Elective
2025-CS-BSc 3 Mandatory
Computer Science Elective
2025-ECE-BSc 3 Mandatory
Electrical and Computer Engineering Elective
2025-ESSMER-BSc 3 Mandatory
Earth Sciences and Sustainable Management of Elective
Environmental Resources
2025-F-ACS-BSc 3 Mandatory
Applied Computer Science Elective
2025-GEM-BA 3 Mandatory
Global Economics and Management Elective
2025-IBA-BA 3 Mandatory
International Business Administration Elective
2025-IEM-BSc 3 Mandatory
Industrial Engineering & Management Elective
2025-IEM-Online-BSc 3 Mandatory
Industrial Engineering & Management (Online) Elective
2025-IRPH-BA 3 Mandatory
International Relations: Politics and History Elective
2025-ISCP-BA 3 Mandatory
Integrated Social and Cognitive Psychology Elective
2025-MCCB-BSc 3 Mandatory
Medicinal Chemistry and Chemical Biology Elective
2025-MDDA-BSc 3 Mandatory
Management, Decisions and Data Analytics Elective
2025-MMDA-BSc 3 Mandatory
Mathematics, Modeling, and Data Analytics Elective
2025-PHDS-BSc 3 Mandatory
Physics and Data Science Elective

145

2025-RIS-BSc 3 Mandatory
Robotics and Intelligent Systems Elective
2025-SDT-BSc 3 Mandatory
Software, Data and Technology Elective
2025-IRPH-BA 4 Mandatory
International Relations: Politics and History Elective
2025-ISCP-BA 4 Mandatory
Integrated Social and Cognitive Psychology Elective
2025-S-ACS-BSc 4 Mandatory
Applied Computer Science Elective
Student Workload
Independent Study | 45
Online Lecture | 17.5
Total Hours | 62.5

Module Components Number Type cp
Logic (perspective 1) CTNS-01 Lecture (Online) 2.5

Module Description

Suppose a friend asks you to help solve a complicated problem? Where do you begin? Arguably, the
first and most difficult task you face is to figure out what the heart of the problem actually is. In doing
that you will look for structural similarities between the problem posed and other problems that arise
in different fields that others may have addressed successfully. Those similarities may point you to a
pathway for resolving the problem you have been asked to solve. But it is not enough to look for
structural similarities. Sometimes relying on similarities may even be misleading. Once you've settled
tentatively on what you take to be the heart of the matter, you will naturally look for materials,
whether evidence or arguments, that you believe is relevant to its potential solution. But the evidence
you investigate of course depends on your formulation of the problem, and your formulation of the
problem likely depends on the tools you have available - including potential sources of evidence and
argumentation. You cannot ignore this interactivity, but you can't allow yourself to be hamstrung
entirely by it. But there is more. The problem itself may be too big to be manageable all at once, so
you will have to explore whether it can be broken into manageable parts and if the information you
have bears on all or only some of those parts. And later you will face the problem of whether the
solutions to the particular sub problems can be put together coherently to solve the entire problem
taken as a whole.

What you are doing is what we call engaging in computational thinking. There are several elements of
computational thinking illustrated above. These include: Decomposition (breaking the larger problem
down into smaller ones); Pattern recognition (identifying structural similarities); Abstraction (ignoring
irrelevant particulars of the problem): and Creating Algorithms), problem-solving formulas.

But even more basic to what you are doing is the process of drawing inferences from the material you
have. After all, how else are you going to create a problem-solving formula, if you draw incorrect

146

inferences about what information has shown and what, if anything follows logically from it. What
you must do is apply the rules of logic to the information to draw inferences that are warranted.

We distinguish between informal and formal systems of logic, both of which are designed to indicate
fallacies as well as warranted inferences. If | argue for a conclusion by appealing to my physical ability
to coerce you, | prove nothing about the truth of what I claim. If anything, by doing so | display my
lack of confidence in my argument. Or if the best | can do is berate you for your skepticism, | have
done little more than offer an ad hominem instead of an argument. Our focus will be on formal
systems of logic, since they are at the heart of both scientific argumentation and computer developed
algorithms. There are in fact many different kinds of logic and all figure to varying degrees in scientific
inquiry. There are inductive types of logic, which purport to formalize the relationship between
premises that if true offer evidence on behalf of a conclusion and the conclusion and are represented
as claims about the extent to which the conclusion is confirmed by the premises. There are deductive
types of logic, which introduce a different relationship between premise and conclusion. These
variations of logic consist in rules that if followed entail that if the premises are true then the
conclusion too must be true.

There are also modal types of logic which are applied specifically to the concepts of necessity and
possibility, and thus to the relationship among sentences that include either or both those terms. And
there is also what are called deontic logic, a modification of logic that purport to show that there are
rules of inference that allow us to infer what we ought to do from facts about the circumstances in
which we find ourselves. In the natural and social sciences most of the emphasis has been placed on
inductive logic, whereas in math it is placed on deductive logic, and in modern physics there is an
increasing interest in the concepts of possibility and necessity and thus in modal logic. The humanities,
especially normative discussions in philosophy and literature are the province of deontic logic.

This module will also take students through the central aspects of computational thinking, as it is
related to logic; it will introduce the central concepts in each, their relationship to one another and
begin to provide the conceptual apparatus and practical skills for scientific inquiry and research.

This 2.5 CP module supports Academic Excellence by providing essential contextual knowledge that
underpins the program’s qualification aims, while appropriately limiting academic depth relative to the
core technical competencies of the field

Intended Learning Outcomes

No | Competence ILO

1 | Apply Apply the various principles of logic and expand them to
computational thinking.

2 | Understand Understand the way in which logical processes in humans and in
computers are similar and different at the same time.

3 | Apply Apply the basic rules of first-order deductive logic and employ them

rules in the context of creating a scientific or social scientific study
and argument.

4 | Employ Employ those rules in the context of creating a scientific or social
scientific study and argument.

147

Indicative Literature

Frege, Gottlob (1879), Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache
des reinen Denkens [Translation: A Formal Language for Pure Thought Modeled on that of
Arithmetic],Halle an der Salle: Verlag von Louis Nebert.

Godel, Kurt (1986), Russels mathematische Logik. In: Alfred North Whitehead, Bertrand
Russell: Principia Mathematica. Vorwort, S. V-XXXIV. Suhrkamp.

Kubica, Jeremy. Computational fairy tales. Jeremy Kubica, 2012.

Leeds, Stephen. "George Boolos and Richard Jeffrey. Computability and logic. Cambridge
University Press, New York and London1974, x+ 262 pp." The Journal of Symbolic Logic 42.4
(1977): 585-586.

McCarthy, Timothy. "Richard Jeffrey. Formal logic: Its scope and limits. of XXXVIII 646.
McGraw-Hill Book Company, New York etc. 1981, xvi+ 198 pp." The Journal of Symbolic Logic
49.4 (1984): 1408-1409.

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Logic (perspective I) Written 60 100 45% All
Examination Minutes

Module Achievement

148

8.2.2 Logic (perspective Il)

Module Name

Logic (perspective Il)

Module Code 2025-CTNS-NSK-02
Module ECTS 2.5
Program Owner 2025-CT

(CONSTRUCTOR Track Area)

Module Coordinator

Prof. Dr. Jules Coleman

Study Semester
Program Semester | Status
2025-BCCB-BSc 3 Mandatory
Biochemistry and Cell Biology Elective
2025-CBT-BSc 3 Mandatory
Chemistry and Biotechnology Elective
2025-CS-BSc 3 Mandatory
Computer Science Elective
2025-ECE-BSc 3 Mandatory
Electrical and Computer Engineering Elective
2025-ESSMER-BSc 3 Mandatory
Earth Sciences and Sustainable Management of Elective
Environmental Resources
2025-F-ACS-BSc 3 Mandatory
Applied Computer Science Elective
2025-GEM-BA 3 Mandatory
Global Economics and Management Elective
2025-IBA-BA 3 Mandatory
International Business Administration Elective
2025-IBA-Online-BA 3 Mandatory
International Business Administration (Online) Elective
2025-1EM-BSc 3 Mandatory
Industrial Engineering & Management Elective
2025-IEM-Online-BSc 3 Mandatory
Industrial Engineering & Management (Online) Elective
2025-IRPH-BA 3 Mandatory
International Relations: Politics and History Elective
2025-ISCP-BA 3 Mandatory
Integrated Social and Cognitive Psychology Elective
2025-MCCB-BSc 3 Mandatory
Medicinal Chemistry and Chemical Biology Elective
2025-MDDA-BSc 3 Mandatory
Management, Decisions and Data Analytics Elective
2025-MMDA-BSc 3 Mandatory
Mathematics, Modeling, and Data Analytics Elective
2025-PHDS-BSc 3 Mandatory
Physics and Data Science Elective

149

2025-RIS-BSc 3 Mandatory
Robotics and Intelligent Systems Elective
2025-SDT-BSc 3 Mandatory
Software, Data and Technology Elective
2025-IRPH-BA 4 Mandatory
International Relations: Politics and History Elective
2025-ISCP-BA 4 Mandatory
Integrated Social and Cognitive Psychology Elective
2025-S-ACS-BSc 4 Mandatory
Applied Computer Science Elective
Student Workload

Independent Study | 45
Online Lecture | 17.5
Total Hours | 62.5

Module Components Number Type cp
Logic (perspective Il) CTNS-02 Lecture (Online) 2.5

Module Description

The focus of this module is on formal systems of logic, since they are at the heart of both scientific
argumentation and computer developed algorithms. There are in fact many kinds of logic and all figure
to varying degrees in scientific inquiry. There are inductive types of logic, which purport to formalize
the relationship between premises that if true offer evidence on behalf of a conclusion and the
conclusion and are represented as claims about the extent to which the conclusion is confirmed by the
premises. There are deductive types of logic, which introduce a different relationship between
premise and conclusion. These variations of logic consist in rules that if followed entail that if the
premises are true then the conclusion too must be true.

This module introduces logics that go beyond traditional deductive propositional logic and predicate
logic and as such it is aimed at students who are already familiar with basics of traditional formal logic.
The aim of the module is to provide an overview of alternative logics and to develop a sensitivity that
there are many different logics that can provide effective tools for solving problems in specific
application domains.

The module first reviews the principles of a traditional logic and then introduces many-valued logics
that distinguish more than two truth values, for example true, false, and unknown. Fuzzy logic extends
traditional logic by replacing truth values with real numbers in the range 0 to 1 that are expressing how
strong the believe into a proposition is. Modal logics introduce modal operators expressing whether a
proposition is necessary or possible. Temporal logics deal with propositions that are qualified by time.
One can view temporal logics as a form of modal logics where propositions are qualified by time
constraints. Interval temporal logic provides a way to reason about time intervals in which propositions
are true.

150

The module will also investigate the application of logic frameworks to specific classes of problems.
For example, a special subset of predicate logic, based on so-called Horn clauses, forms the basis of
logic programming languages such as Prolog. Description logics, which are usually decidable logics, are
used to model relationships and they have applications in the semantic web, which enables search
engines to reason about resources present on the Internet.

This 2.5 CP module supports Academic Excellence by providing essential contextual knowledge that
underpins the program’s qualification aims, while appropriately limiting academic depth relative to the
core technical competencies of the field

Intended Learning Outcomes

No | Competence ILO
1 | Apply Apply the various principles of logic.
2 | Explain Explain practical relevance of non-standard logic.
3 | Describe Describe how many-valued logic extends basic predicate logic.
4 | Apply Apply basic rules of fuzzy logic to calculate partial truth values.
5 | Sketch Sketch basic rules of temporal logic.
6 | Implement Implement predicates in a logic programming language.
7 | Prove Prove some simple non-standard logic theorems.

Indicative Literature

e Baader, Franz. "The Description Logic Handbook: Theory Implementation and Applications”,
Cambridge University Press, 2nd edition, May 2010.

e Bergmann, Merry. “An Introduction to Many-Valued and Fuzzy Logic: Semantics, Algebras, and
Derivation Systems”, Cambridge University Press, April 2008.

e Fisher, Michael. "An Introduction to Practical Formal Methods Using Temporal Logic", Wiley,
Juli 2011.

e Sterling, Leon S., Ehud Y. Shapiro, Ehud Y. "The Art of Prolog", 2nd edition, MIT Press, March
1994.

Entry Requirements

Prerequisites None

Co-requisites None

Additional Remarks None

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs

Type or (%) m for
Length Pass

Logic (perspective 1) Written 60 100 45% All

Examination Minutes

151

Module Achievement

152

8.2.3 Causation and Correlation (perspective I)

Module Name

Causation and Correlation (perspective 1)

Module Code 2025-CTNS-NSK-03
Module ECTS 2.5
Program Owner 2025-CT

(CONSTRUCTOR Track Area)

Module Coordinator

Prof. Dr. Jules Coleman

Study Semester
Program Semester | Status
2025-ISCP-BA 3 Mandatory
Integrated Social and Cognitive Psychology Elective
2025-S-ACS-BSc 3 Mandatory
Applied Computer Science Elective
2025-BCCB-BSc 4 Mandatory
Biochemistry and Cell Biology Elective
2025-CBT-BSc 4 Mandatory
Chemistry and Biotechnology Elective
2025-CS-BSc 4 Mandatory
Computer Science Elective
2025-ECE-BSc 4 Mandatory
Electrical and Computer Engineering Elective
2025-ESSMER-BSc 4 Mandatory
Earth Sciences and Sustainable Management of Elective
Environmental Resources
2025-F-ACS-BSc 4 Mandatory
Applied Computer Science Elective
2025-GEM-BA 4 Mandatory
Global Economics and Management Elective
2025-IBA-BA 4 Mandatory
International Business Administration Elective
2025-IBA-Online-BA 4 Mandatory
International Business Administration (Online) Elective
2025-1EM-BSc 4 Mandatory
Industrial Engineering & Management Elective
2025-IEM-Online-BSc 4 Mandatory
Industrial Engineering & Management (Online) Elective
2025-IRPH-BA 4 Mandatory
International Relations: Politics and History Elective
2025-ISCP-BA 4 Mandatory
Integrated Social and Cognitive Psychology Elective
2025-MCCB-BSc 4 Mandatory
Medicinal Chemistry and Chemical Biology Elective
2025-MDDA-BSc 4 Mandatory
Management, Decisions and Data Analytics Elective

153

2025-MMDA-BSc 4 Mandatory
Mathematics, Modeling, and Data Analytics Elective
2025-PHDS-BSc 4 Mandatory
Physics and Data Science Elective
2025-RIS-BSc 4 Mandatory
Robotics and Intelligent Systems Elective
2025-SDT-BSc 4 Mandatory
Software, Data and Technology Elective
Student Workload

Independent Study | 45
Online Lecture | 17.5
Total Hours | 62.5

Module Components Number Type cp
Causation and Correlation CTNS-03 Lecture (Online) 2.5

Module Description

In many ways, life is a journey. And also, as in other journeys, our success or failure depends not only
on our personal traits and character, our physical and mental health, but also on the accuracy of our
map. We need to know what the world we are navigating is actually like, the how, why and the what
of what makes it work the way it does. The natural sciences provide the most important tool we have
developed to learn how the world works and why it works the way it does. The social sciences provide
the most advanced tools we have to learn how we and other human beings, similar in most ways,
different in many others, act and react and what makes them do what they do. In order for our maps
to be useful, they must be accurate and correctly reflect the way the natural and social worlds work
and why they work as they do.

The natural sciences and social sciences are blessed with enormous amounts of data. In this way,
history and the present are gifts to us. To understand how and why the world works the way it does
requires that we are able to offer an explanation of it. The data supports a number of possible
explanations of it. How are we to choose among potential explanations? Explanations, if sound, will
enable us to make reliable predictions about what the future will be like, and also to identify many
possibilities that may unfold in the future. But there are differences not just in the degree of confidence
we have in our predictions, but in whether some of them are necessary future states or whether all of
them are merely possibilities? Thus, there are three related activities at the core of scientific inquiry:
understanding where we are now and how we got here (historical); knowing what to expect going
forward (prediction); and exploring how we can change the paths we are on (creativity).

At the heart of these activities are certain fundamental concepts, all of which are related to the
scientific quest to uncover immutable and unchanging laws of nature. Laws of nature are thought to
reflect a causal nexus between a previous event and a future one. There are also true statements that
reflect universal or nearly universal connections between events past and present that are not laws of
nature because the relationship they express is that of a correlation between events. A working
thermostat accurately allows us to determine or even to predict the temperature in the room in which

154

it is located, but it does not explain why the room has the temperature it has. What then is the core
difference between causal relationships and correlations? At the same time, we all recognize that
given where we are now there are many possible futures for each of us, and even had our lives gone
just the slightest bit differently than they have, our present state could well have been very different
than it is. The relationship between possible pathways between events that have not materialized but
could have is expressed through the idea of counterfactual.

Creating accurate roadmaps, forming expectations we can rely on, making the world a more verdant
and attractive place requires us to understand the concepts of causation, correlation, counterfactual
explanation, prediction, necessity, possibility, law of nature and universal generalization. This course
is designed precisely to provide the conceptual tools and intellectual skills to implement those
concepts in our future readings and research and ultimately in our experimental investigations, and to
employ those tools in various disciplines.

This 2.5 CP module supports Academic Excellence by providing essential contextual knowledge that
underpins the program’s qualification aims, while appropriately limiting academic depth relative to the
core technical competencies of the field

Intended Learning Outcomes

No | Competence ILO

1 | Formulate Formulate testable hypotheses that are designed to reveal causal
connections and those designed to reveal interesting, important and
useful correlations.

2 | Distinguish Distinguish scientifically interesting correlations from unimportant
ones.

3 | Apply Apply critical thinking skills to evaluate information.

4 | Understand Understand when and why inquiry into unrealized possibility is

important and relevant.

Indicative Literature

e Goodman, Nelson. Fact, fiction, and forecast. Harvard University Press, 1983.

e Quine Willard, Van Orman, and Joseph Silbert Ullian. The web of belief. Vol 2. New York:
Random house, 1978.

e Thomas S. Kuhn: The Structure of Scientific Revolutions. Nelson, fourth edition, 2012.

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

155

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Causation and Correlation | Written 60 100 45% 1-4
Examination Minutes

Module Achievement

156

8.2.4 Causation and Correlation (perspective Il)

Module Name

Causation and Correlation (perspective 1)

Module Code 2025-CTNS-NSK-04
Module ECTS 2.5
Program Owner 2025-CT
(CONSTRUCTOR Track Area)
Module Coordinator Dr. Eoin Ryan

Dr. Irina Chiaburu
Prof. Dr. Keivan Mallahi Karai

Study Semester
Program Semester | Status
2025-ISCP-BA 3 Mandatory
Integrated Social and Cognitive Psychology Elective
2025-S-ACS-BSc 3 Mandatory
Applied Computer Science Elective
2025-BCCB-BSc 4 Mandatory
Biochemistry and Cell Biology Elective
2025-CBT-BSc 4 Mandatory
Chemistry and Biotechnology Elective
2025-CS-BSc 4 Mandatory
Computer Science Elective
2025-ECE-BSc 4 Mandatory
Electrical and Computer Engineering Elective
2025-ESSMER-BSc 4 Mandatory
Earth Sciences and Sustainable Management of Elective
Environmental Resources
2025-F-ACS-BSc 4 Mandatory
Applied Computer Science Elective
2025-GEM-BA 4 Mandatory
Global Economics and Management Elective
2025-IBA-BA 4 Mandatory
International Business Administration Elective
2025-IBA-Online-BA 4 Mandatory
International Business Administration (Online) Elective
2025-IEM-BSc 4 Mandatory
Industrial Engineering & Management Elective
2025-IEM-Online-BSc 4 Mandatory
Industrial Engineering & Management (Online) Elective
2025-IRPH-BA 4 Mandatory
International Relations: Politics and History Elective
2025-ISCP-BA 4 Mandatory
Integrated Social and Cognitive Psychology Elective
2025-MCCB-BSc 4 Mandatory
Medicinal Chemistry and Chemical Biology Elective

157

2025-MDDA-BSc 4 Mandatory
Management, Decisions and Data Analytics Elective
2025-MMDA-BSc 4 Mandatory
Mathematics, Modeling, and Data Analytics Elective
2025-PHDS-BSc 4 Mandatory
Physics and Data Science Elective
2025-RIS-BSc 4 Mandatory
Robotics and Intelligent Systems Elective
2025-SDT-BSc 4 Mandatory
Software, Data and Technology Elective
2025-MMDA-BSc 5 Mandatory
Mathematics, Modeling, and Data Analytics Elective
Student Workload

Independent Study | 45
Online Lecture | 17.5
Total Hours | 62.5

Module Components Number Type cp
Causation and Correlation | CTNS-04 Lecture (Online) 2.5
(perspective Il)

Module Description

Causality or causation is a surprisingly difficult concept to understand. David Hume famously noted
that causality is a concept that our science and philosophy cannot do without, but it is equally a concept
that our science and philosophy cannot describe. Since Hume, the problem of cause has not gone
away, and sometimes seems to get even worse (e.g., quantum mechanics confusing previous notions
of causality). Yet, ways of doing science that lessen our need to explicitly use causality have become
very effective (e.g., huge developments in statistics). Nevertheless, it still seems that the concept of
causality is at the core of explaining how the world works, across fields as diverse as physics, medicine,
logistics, the law, sociology, and history - and ordinary daily life - through all of which, explanations
and predictions in terms of cause and effect remain intuitively central.

Causality remains a thorny problem but, in recent decades, significant progress has occurred,
particularly in work by or inspired by Judea Pearl. This work incorporates many 20th century
developments, including statistical methods - but with a reemphasis on finding the why, or the cause,
behind statistical correlations -, progress in understanding the logic, semantics and metaphysics of
conditionals and counterfactuals, developments based on insights from the likes of philosopher Hans
Reichenbach or biological statistician Sewall Wright into causal precedence and path analysis, and
much more. The result is a new toolkit to identify causes and build causal explanations. Yet even as we
get better at identifying causes, this raises new (or old) questions about causality, including
metaphysical questions about the nature of causes (and effects, events, objects, etc), but also
guestions about what we really use causality for (understanding the world as it is or just to glean
predictive control of specific outcomes), about how causality is used differently in different fields and

158

activities (is cause in physics the same as that in history?), and about how other crucial concepts relate
to our concept of cause (space and time seem to be related to causality, but so do concepts of legal
and moral responsibility).

This course will introduce students to the mathematical formalism derived from Pearl's work, based
on directed acyclic graphs and probability theory. Building upon previous work by Reichenbach and
Wright, Pearl defines a "a calculus of interventions" of "do-calculus" for talking about interventions
and their relation to causation and counterfactuals. This model has been applied in various areas
ranging from econometrics to statistics, where acquiring knowledge about causality is of great
importance.

At the same time, the course will not forget some of the metaphysical and epistemological issues
around cause, so that students can better critically evaluate putative causal explanations in their full
context. Abstractly, such issues involve some of the same philosophical questions Hume already asked,
but more practically, it is important to see how metaphysical and epistemological debates surrounding
the notion of cause affect scientific practice, and equally if not more importantly, how scientific
practice pushes the limits of theory. This course will look at various ways in which empirical data can
be transformed into explanations and theories, including the variance approach to causality
(characteristic of the positivistic quantitative paradigm), and the process theory of causality
(associated with qualitative methodology). Examples and case studies will be relevant for students of
the social sciences but also students of the natural/physical world as well.

This 2.5 CP module supports Academic Excellence by providing essential contextual knowledge that
underpins the program’s qualification aims, while appropriately limiting academic depth relative to the
core technical competencies of the field

Recommended Knowledge

Basic probability theory

Intended Learning Outcomes

No | Competence ILO

1 | Have Have a clear understanding of the history of causal thinking.

2 | Form Form a critical understanding of the key debates and controversies
surrounding the idea of causality.

3 | Recognize Recognize and apply probabilistic causal models.

4 | Explain Explain how understanding of causality differs among different
disciplines.

5 | Demonstrate Demonstrate how theoretical thinking about causality has shaped
scientific practices.

Indicative Literature

e llari, Phyllis McKay and Federica Russo. Causality: Philosophical Theory Meets Scientific
Practice. Oxford University Press 2014.
e Paul, L. A. and Ned Hall. Causation: A User’s Guide. Oxford University Press 2013.

159

e Pearl, Judea, Glymour Madelyn and Jewell, Nicolas. Causal Inference in Statistics: A Primer.
Wiley 2016.
e Pearl, Judea. Causality: Models, Reasoning and Inference. Cambridge University Press 2009.

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Causation and Correlation | Written 60 100 45% 1-5
(perspective Il) Examination Minutes

Module Achievement

160

8.2.5 Linear Model and Matrices

Module Name

Linear Model and Matrices

Module Code

2025-CTNS-NSK-05

Module ECTS 5

Program Owner 2025-CT

(CONSTRUCTOR Track Area)

Module Coordinator

Prof. Dr. Marc-Thorsten Hitt

Study Semester
Program Semester | Status
2025-BCCB-BSc 5 Mandatory
Biochemistry and Cell Biology Elective
2025-CBT-BSc 5 Mandatory
Chemistry and Biotechnology Elective
2025-CS-BSc 5 Mandatory
Computer Science Elective
2025-ECE-BSc 5 Mandatory
Electrical and Computer Engineering Elective
2025-ESSMER-BSc 5 Mandatory
Earth Sciences and Sustainable Management of Elective
Environmental Resources
2025-GEM-BA 5 Mandatory
Global Economics and Management Elective
2025-IBA-BA 5 Mandatory
International Business Administration Elective
2025-IBA-Online-BA 5 Mandatory
International Business Administration (Online) Elective
2025-IRPH-BA 5 Mandatory
International Relations: Politics and History Elective
2025-ISCP-BA 5 Mandatory
Integrated Social and Cognitive Psychology Elective
2025-MCCB-BSc 5 Mandatory
Medicinal Chemistry and Chemical Biology Elective
2025-MDDA-BSc 5 Mandatory
Management, Decisions and Data Analytics Elective
2025-MMDA-BSc 5 Mandatory
Mathematics, Modeling, and Data Analytics Elective
2025-PHDS-BSc 5 Mandatory
Physics and Data Science Elective
2025-RIS-BSc 5 Mandatory
Robotics and Intelligent Systems Elective
2025-SDT-BSc 5 Mandatory
Software, Data and Technology Elective
2025-ISCP-BA 6 Mandatory
Integrated Social and Cognitive Psychology Elective

161

Student Workload

Independent Study | 90
Online Lecture | 35
Total Hours | 125

Module Components Number Type cp
Linear model and matrices CTNS-05 Seminar (Online) 5

Module Description

There are no universal 'right skills'. But the notion of linear models and the avenue to matrices and
their properties can be useful in diverse disciplines to implement a quantitative, computational
approach. Some of the most popular data and systems analysis strategies are built upon this
framework. Examples include principal component analysis (PCA), the optimization techniques used in
Operations Research (OR), the assessment of stable and unstable states in nonlinear dynamical
systems, as well as aspects of machine learning.

Here we introduce the toolbox of linear models and matrix-based methods embedded in a wide range
of transdisciplinary applications (part 1). We describe its foundation in linear algebra (part 2) and the
range of tools and methods derived from this conceptual framework (part 3). At the end of the course,
we outline applications to graph theory and machine learning (part 4). Matrices can be useful
representations of networks and of system of linear equations. They are also the core object of linear
stability analysis, an approach used in nonlinear dynamics. Throughout the course, examples from
neuroscience, social sciences, medicine, biology, physics, chemistry, and other fields are used to
illustrate these methods.

A strong emphasis of the course is on the sensible usage of linear approaches in a nonlinear world. We
will critically reflect the advantages as well as the disadvantages and limitations of this method.
Guiding questions are: How appropriate is a linear approximation of a nonlinear system? What do you
really learn from PCA? How reliable are the optimal states obtained via linear programming (LP)
techniques?

This debate is embedded in a broader context: How does the choice of a mathematical technique
confine your view on the system at hand? How, on the other hand, does it increase your capabilities
of analyzing the system (due to software available for this technique, the ability to compare with
findings from other fields built upon the same technique and the volume of knowledge about this
technique)?

In the end, students will have a clearer understanding of linear models and matrix approaches in their
own discipline, but they will also see the full transdisciplinarity of this topic. They will make better
decisions in their choice of data analysis methods and become mindful of the challenges when going
from linear to nonlinear thinking.

Intended Learning Outcomes

\ No \ Competence ILO

162

1 | Apply Apply the concept of linear modeling in their own discipline.

2 | Distinguish Distinguish between linear and nonlinear interpretation strategies
and understand the range of applicability of linear models.

3 | Make Make use of data analysis / data interpretation strategies from other
disciplines, which are derived from linear algebra.

4 | Know Be aware of the ties that linear models have to machine learning and
network theory,

5 | Note Note that these four ILOs can be loosely associated with the four
parts of the course indicated above.

Indicative Literature

e Part 1: material from Linear Algebra for Everyone, Gilbert Strang, Wellesley-Cambridge Press,

2020.

e Part 2: material from Introduction to Linear Algebra (5th Edition), Gilbert Strang, Cambridge
University Press, 2021.

e Part 3: Mainzer, Klaus. "Introduction: from linear to nonlinear thinking." Thinking in
Complexity: The Computational Dynamics of Matter, Mind and Mankind (2007): 1-16.;
material from Mathematics of Big Data: Spreadsheets, Databases, Matrices, and Graphs,
Jeremy Kepner, Hayden Jananthan, The MIT Press, 2018.; material from Introduction to Linear
Algebra (5th Edition), Gilbert Strang, Cambridge University Press, 2021.

e Part 4: material from Linear Algebra and Learning from Data, Gilbert Strang, Wellesley-
Cambridge Press, 2019.

Entry Requirements

Prerequisites

2025-CTNS-NSK-01
Logic (perspective |)

2025-CTNS-NSK-02
Logic (perspective Il)

2025-CTNS-NSK-03
Causation and Correlation (perspective 1)

2025-CTNS-NSK-04
Causation and Correlation (perspective 1)

Co-requisites

None

Additional Remarks

None

163

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Linear model and matrices | Written 120 100 45% 1-4
Examination Minutes

Module Achievement

164

8.2.6 Complex Problem Solving

Module Name

Complex Problem Solving

Module Code

2025-CTNS-NSK-06

Module ECTS 5

Program Owner 2025-CT

(CONSTRUCTOR Track Area)

Module Coordinator

Prof. Dr. Marco Verweij

Study Semester
Program Semester | Status
2025-BCCB-BSc 5 Mandatory
Biochemistry and Cell Biology Elective
2025-CBT-BSc 5 Mandatory
Chemistry and Biotechnology Elective
2025-CS-BSc 5 Mandatory
Computer Science Elective
2025-ECE-BSc 5 Mandatory
Electrical and Computer Engineering Elective
2025-ESSMER-BSc 5 Mandatory
Earth Sciences and Sustainable Management of Elective
Environmental Resources
2025-GEM-BA 5 Mandatory
Global Economics and Management Elective
2025-IBA-BA 5 Mandatory
International Business Administration Elective
2025-IBA-Online-BA 5 Mandatory
International Business Administration (Online) Elective
2025-IRPH-BA 5 Mandatory
International Relations: Politics and History Elective
2025-ISCP-BA 5 Mandatory
Integrated Social and Cognitive Psychology Elective
2025-MCCB-BSc 5 Mandatory
Medicinal Chemistry and Chemical Biology Elective
2025-MDDA-BSc 5 Mandatory
Management, Decisions and Data Analytics Elective
2025-MMDA-BSc 5 Mandatory
Mathematics, Modeling, and Data Analytics Elective
2025-PHDS-BSc 5 Mandatory
Physics and Data Science Elective
2025-RIS-BSc 5 Mandatory
Robotics and Intelligent Systems Elective
2025-SDT-BSc 5 Mandatory
Software, Data and Technology Elective
2025-ISCP-BA 6 Mandatory
Integrated Social and Cognitive Psychology Elective

165

Student Workload

Independent Study | 90
Online Lecture | 35
Total Hours | 125

Module Components Number Type cp
Complex Problem Solving CTNS-06 Lecture (Online) 5

Module Description

Complex problems are, by definition, non-linear and/or emergent. Some fifty years ago, scholars such
as Herbert Simon began to argue that societies around the world had developed an impressive array
of tools with which to solve simple and even complicated problems, but still needed to develop
methods with which to address the rapidly increasing number of complex issues. Since then, a variety
of such methods has emerged. These include 'serious games' developed in computer science,
'multisector systems analysis' applied in civil and environmental engineering, 'robust decision-making'
proposed by the RAND Corporation, 'design thinking' developed in engineering and business studies,
'structured problem-solving' used by McKinsey & Co., 'real-time technology assessment' advocated in
science and technology studies, and 'deliberative decision-making' emanating from political science.

In this course, students first learn to distinguish between simple, complicated and complex problems.
They also become familiar with the ways in which a particular issue can sometimes shift from one
category into another. In addition, the participants learn to apply several tools for resolving complex
problems. Finally, the students are introduced to the various ways in which natural and social scientists
can help stakeholders resolve complex problems. Throughout the course examples and applications
will be used. When possible, guest lectures will be offered by experts on a particular tool for tackling
complex issues. For the written, take-home exam, students will have to select a specific complex
problem, analyse it and come up with a recommendation - in addition to answering several questions
about the material learned.

Recommended Knowledge

- Being able to read primary academic literature
- Willingness to engage in teamwork
- Camillus, J. (2008). Strategy as a wicked problem. Harvard Business Review 86: 99-106;

- Rogers, P. J. (2008). Using programme theory to evaluate complicated and complex aspects of
interventions. Evaluation, 14, 29-48.

Intended Learning Outcomes

No | Competence ILO
1 | Identify Identify a complex problem.

166

2 | Develop Develop an acceptable recommendation for resolving complex
problems.
3 | Understand Understand the roles that natural and social scientists can play in

helping stakeholders resolve complex problems.

Indicative Literature

Camillus, J. (2008). Strategy as a wicked problem. Harvard Business Review 86: 99-106; Rogers,
P. J. (2008). Using programme theory to evaluate complicated and complex aspects of
interventions. Evaluation, 14, 29-48.

Chia, A. (2019). Distilling the essence of the McKinsey way: The problem-solving cycle.
Management Teaching Review 4(4): 350-377.

Den Haan, J., van der Voort, M.C., Baart, F., Berends, K.D., van den Berg, M.C., Straatsma,
M.W., Geenen, A.J.P., & Hulscher, S.J.M.H. (2020). The virtual river game: Gaming using models
to collaboratively explore river management complexity, Environmental Modelling & Software
134, 104855.

Folke, C., Carpenter, S., EImqvist, T., Gunderson, L., Holling, C.S., & Walker, B. (2002). Resilience
and sustainable development: Building adaptive capacity in a world of transformations.
AMBIO: A Journal of the Human Environment 31(5): 437-440.

Ostrom, E. (2010). Beyond markets and states: Polycentric governance of complex economic
systems. American Economic Review 100(3): 641-72.

Pielke, R. Jr. (2007). The honest broker: Making sense of science in policy and politics.
Cambridge: Cambridge University Press.

Project Management Institute (2021). A guide to the project management body of knowledge
(PMBOK® guide).

Schon, D. A., & Rein, M. (1994). Frame reflection: Toward the resolution of intractable policy
controversies. New York: Basic Books.

Simon, H. A. (1973). The structure of ill structured problems. Artificial Intelligence 4(3-4): 181-
201.

Verweij, M. & Thompson, M. (Eds.) (2006). Clumsy solutions for a complex world. London:
Palgrave Macmillan.

Entry Requirements

Prerequisites 2025-CTNS-NSK-01

Logic (perspective 1)

2025-CTNS-NSK-03
Causation and Correlation (perspective 1)

2025-CTNS-NSK-04
Causation and Correlation (perspective)

167

2025-CTNS-NSK-02
Logic (perspective Il)

Co-requisites None
Additional Remarks None
Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs

Type or (%) m for
Length Pass

Complex Problem Solving | Written 120 100 45% 1-3

Examination Minutes

Module Achievement

168

8.2.7 Argumentation, Data Visualization and Communication (perspective |)

Module Name Argumentation, Data Visualization and
Communication (perspective I)
Module Code 2025-CTNS-NSK-07
Module ECTS 5
Program Owner 2025-CT
(CONSTRUCTOR Track Area)
Module Coordinator Prof. Dr. Arvid Kappas
Prof. Dr. Jules Coleman
Study Semester
Program Semester | Status
2025-BCCB-BSc 5 Mandatory
Biochemistry and Cell Biology Elective
2025-CBT-BSc 5 Mandatory
Chemistry and Biotechnology Elective
2025-CS-BSc 5 Mandatory
Computer Science Elective
2025-ECE-BSc 5 Mandatory
Electrical and Computer Engineering Elective
2025-ESSMER-BSc 5 Mandatory
Earth Sciences and Sustainable Management of Elective
Environmental Resources
2025-F-ACS-BSc 5 Mandatory
Applied Computer Science Elective
2025-GEM-BA 5 Mandatory
Global Economics and Management Elective
2025-IBA-BA 5 Mandatory
International Business Administration Elective
2025-IBA-Online-BA 5 Mandatory
International Business Administration (Online) Elective
2025-IRPH-BA 5 Mandatory
International Relations: Politics and History Elective
2025-ISCP-BA 5 Mandatory
Integrated Social and Cognitive Psychology Elective
2025-MCCB-BSc 5 Mandatory
Medicinal Chemistry and Chemical Biology Elective
2025-MDDA-BSc 5 Mandatory
Management, Decisions and Data Analytics Elective
2025-MMDA-BSc 5 Mandatory
Mathematics, Modeling, and Data Analytics Elective
2025-PHDS-BSc 5 Mandatory
Physics and Data Science Elective
2025-RIS-BSc 5 Mandatory
Robotics and Intelligent Systems Elective

169

2025-S-ACS-BSc 5 Mandatory
Applied Computer Science Elective
2025-SDT-BSc 5 Mandatory
Software, Data and Technology Elective
2025-IRPH-BA 6 Mandatory
International Relations: Politics and History Elective
Student Workload

Independent Study | 90
Online Lecture | 35
Total Hours | 125

Module Components Number Type cp
Argumentation, Data Visualization and | CTNS-07 Lecture (Online) 5
Communication (perspective I)

Module Description

One must be careful not to confuse argumentation with being argumentative. The latter is an
unattractive personal attribute, whereas the former is a requirement of publicly holding a belief,
asserting the truth of a proposition, the plausibility of a hypothesis, or a judgment of the value of a
person or an asset. It is an essential component of public discourse. Public discourse is governed by
norms and one of those norms is that those who assert the truth of a proposition or the validity of an
argument or the responsibility of another for wrongdoing open themselves up to good faith requests
to defend their claims. In its most general meaning, argumentation is the requirement that one offer
evidence in support of the claims they make, as well as in defense of the judgments and assessments
they reach. There are different modalities of argumentation associated with different contexts and
disciplines. Legal arguments have a structure of their own as do assessments of medical conditions
and moral character. In each case, there are differences in the kind of evidence that is thought relevant
and, more importantly, in the standards of assessment for whether a case has been successfully made.
Different modalities of argumentation require can call for different modes of reasoning. We not only
offer reasons in defense of or in support of beliefs we have, judgments we make and hypotheses we
offer, but we reason from evidence we collect to conclusions that are warranted by them.

Reasoning can be informal and sometimes even appear unstructured. When we recognize some
reasoning as unstructured yet appropriate what we usually have in mind is that it is not linear. Most
reasoning we are familiar with is linear in character. From A we infer B, and from A and B we infer C,
which all together support our commitment to D. The same form of reasoning applies whether the
evidence for A, B or C is direct or circumstantial. What changes in these cases is perhaps the weight
we give to the evidence and thus the confidence we have in drawing inferences from it.

Especially in cases where reasoning can be supported by quantitative data, wherever quantitative data
can be obtained either directly or by linear or nonlinear models, the visualization of the corresponding
data can become key in both, reasoning and argumentation. A graphical representation can reduce
the complexity of argumentation and is considered a must in effective scientific communication.
Consequently, the course will also focus on smart and compelling ways for data visualization - in ways

170

that go beyond what is typically taught in statistics or mathematics lectures. These tools are constantly
developing, as a reflection of new software and changes in state of the presentation art. Which graph
or bar chart to use best for which data, the use of colors to underline messages and arguments, but
also the pitfalls when presenting data in a poor or even misleading manner. This will also help in readily
identifying intentional mis-representation of data by others, the simplest to recognize being truncating
the ordinate of a graph in order to exaggerate trends. This frequently leads to false arguments, which
can then be readily countered.

There are other modalities of reasoning that are not linear however. Instead they are coherentist. We
argue for the plausibility of a claim sometimes by showing that it fits in with a set of other claims for
which we have independent support. The fit is itself the reason that is supposed to provide confidence
or grounds for believing the contested claim.

Other times, the nature of reasoning involves establishing not just the fit but the mutual support
individual items in the evidentiary set provide for one another. This is the familiar idea of a web of
interconnected, mutually supportive beliefs. In some cases, the support is in all instances strong; in
others it is uniformly weak, but the set is very large; in other cases, the support provided each bit of
evidence for the other is mixed: sometimes strong, sometimes weak, and so on.

There are three fundamental ideas that we want to extract from this segment of the course. These are
(1) that argumentation is itself a requirement of being a researcher who claims to have made findings
of one sort or another; (2) that there are different forms of appropriate argumentation for different
domains and circumstances; and (3) that there are different forms of reasoning on behalf of various
claims or from various bits of evidence to conclusions: whether those conclusions are value judgments,
political beliefs, or scientific conclusions. Our goal is to familiarize you with all three of these deep
ideas and to help you gain facility with each.

Intended Learning Outcomes

No | Competence ILO

1 | Distinguish Distinguish among different modalities of argument, e.g. legal
arguments, vs. scientific ones.

2 | Construct Construct arguments using tools of data visualization.

3 | Communicate | Communicate conclusions and arguments concisely, clearly and
convincingly.

Indicative Literature

e (Cairo, A (2012). The Functional Art: An introduction to information graphics and visualization.
New Ridders.

e Knaflic, C.N. (2015). Storytelling with data: A data visualization guide for business
professionals. John Wiley & Sons.

e Tufte, E.R. (1985). The visual display of quantitative information. The Journal for Healthcare
Quality (JHQ), 7(3), 15.

Entry Requirements

Prerequisites 2025-CTNS-NSK-01
171

Logic (perspective 1)

2025-CTNS-NSK-03
Causation and Correlation (perspective 1)

2025-CTNS-NSK-04
Causation and Correlation (perspective 1)

2025-CTNS-NSK-02
Logic (perspective Il)

Co-requisites None

Additional Remarks None

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for

Length Pass

Argumentation, Data | Written 120 100 45% 1-3

Visualization and | Examination Minutes

Communication

(perspective 1)

Module Achievement

172

8.2.8 Argumentation, Data Visualization and Communication (perspective Il)

Module Name Argumentation, Data Visualization and
Communication (perspective Il)
Module Code 2025-CTNS-NSK-08
Module ECTS 5
Program Owner 2025-CT
(CONSTRUCTOR Track Area)
Module Coordinator Prof. Dr. Arvid Kappas
Prof. Dr. Jules Coleman
Study Semester
Program Semester | Status
2025-IRPH-BA 5 Mandatory
International Relations: Politics and History Elective
2025-BCCB-BSc 6 Mandatory
Biochemistry and Cell Biology Elective
2025-CBT-BSc 6 Mandatory
Chemistry and Biotechnology Elective
2025-CS-BSc 6 Mandatory
Computer Science Elective
2025-ECE-BSc 6 Mandatory
Electrical and Computer Engineering Elective
2025-ESSMER-BSc 6 Mandatory
Earth Sciences and Sustainable Management of Elective
Environmental Resources
2025-F-ACS-BSc 6 Mandatory
Applied Computer Science Elective
2025-GEM-BA 6 Mandatory
Global Economics and Management Elective
2025-IBA-BA 6 Mandatory
International Business Administration Elective
2025-IBA-Online-BA 6 Mandatory
International Business Administration (Online) Elective
2025-IRPH-BA 6 Mandatory
International Relations: Politics and History Elective
2025-ISCP-BA 6 Mandatory
Integrated Social and Cognitive Psychology Elective
2025-MCCB-BSc 6 Mandatory
Medicinal Chemistry and Chemical Biology Elective
2025-MDDA-BSc 6 Mandatory
Management, Decisions and Data Analytics Elective
2025-MMDA-BSc 6 Mandatory
Mathematics, Modeling, and Data Analytics Elective
2025-PHDS-BSc 6 Mandatory
Physics and Data Science Elective

173

2025-RIS-BSc 6 Mandatory
Robotics and Intelligent Systems Elective
2025-S-ACS-BSc 6 Mandatory
Applied Computer Science Elective
2025-SDT-BSc 6 Mandatory
Software, Data and Technology Elective
Student Workload

Independent Study | 80
Online Lecture | 35
Tutorial | 10

Total Hours | 125

Module Components Number Type cp

Argumentation, Data Visualization and | CTNS-08 Lecture (Online) 5
Communication (perspective Il)

Module Description

Humans are a social species, and interaction is crucial throughout the entire life span. While much of
human communication involves language, there is a complex multichannel system of nonverbal
communication that enriches linguistic content, provides context, and is also involved in structuring
dynamic interaction. Interactants achieve goals by encoding information that is interpreted in the light
of current context in transactions with others. This complexity implies also that there are frequent
misunderstandings as a sender's intention is not fulfilled. Students in this course will learn to
understand the structure of communication processes in a variety of formal and informal contexts.
They will learn what constitutes challenges to achieving successful communication and to how to
communicate effectively, taking the context and specific requirements for a target audience into
consideration. These aspects will be discussed also in the scientific context, as well as business, and
special cases, such as legal context - particularly with view to argumentation theory.

Communication is a truly transdisciplinary concept that involves knowledge from diverse fields such as
biology, psychology, neuroscience, linguistics, sociology, philosophy, communication and information
science. Students will learn what these different disciplines contribute to an understanding of
communication and how theories from these fields can be applied in the real world. In the context of
scientific communication, there will also be a focus on visual communication of data in different
disciplines. Good practice examples will be contrasted with typical errors to facilitate successful
communication also with view to the Bachelor's thesis.

Recommended Knowledge

- Ability and openness to engage in interactions
- Media literacy, critical thinking and a proficient handling of data sources

- Own research in academic literature

174

Intended Learning Outcomes

No | Competence ILO
1 | Analyze Analyze communication processes in formal and informal contexts.
2 | Identify Identify challenges and failures in communication.
3 | Design Design communications to achieve specified goals to specific target
groups.
4 | Understand Understand the principles of argumentation theory.
5 | Use Use data visualization in scientific communications.

Indicative Literature

e Douglas Walton: Argumentation Theory — A Very Short Introduction. In: Simari, G., Rahwan, I.
(eds) Argumentation in Artificial Intelligence. Springer, Boston, MA, 2009.

e Joseph A. DeVito: The Interpersonal Communication Book (Global edition, 16th edition), 2022.

e Steven L. Franconeri, Lace M. Padilla, Priti Shah, Jeffrey M. Zacks, and Jessica Hullman: The
Science of Visual Data Communication: What Works Psychological Science in the Public
Interest, 22(3), 110-161, 2022.

Entry Requirements

Prerequisites 2025-CTNS-NSK-01
Logic (perspective |)

2025-CTNS-NSK-02
Logic (perspective Il)

2025-CTNS-NSK-03
Causation and Correlation (perspective I)

2025-CTNS-NSK-04
Causation and Correlation (perspective 1)

Co-requisites None
Additional Remarks None

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Argumentation, Data | Presentation Digital 100 45% 1-5
Visualization and submissi

175

Communication on
(perspective 1) (Asynchr
onous)

Module Achievement

Asynchronous presentation on a topic relating to the major of the student, including a reflection
including concept outlining the rationale for how arguments are selected and presented based on a
particular target group for a particular purpose. The presentation shall be multimedial and include the
presentation of data. The module achievement ensures sufficient knowledge about key concepts of
effective communication including a reflection on the presentation itself.

176

8.2.9 Agency, Leadership, and Accountability

Module Name

Agency, Leadership, and Accountability

Module Code

2025-CTNS-NSK-09

Module ECTS 5

Program Owner

2025-CT
(CONSTRUCTOR Track Area)

Module Coordinator

Prof. Dr. Jules Coleman

Study Semester
Program Semester | Status
2025-S-ACS-BSc 5 Mandatory
Applied Computer Science
2025-BCCB-BSc 6 Mandatory
Biochemistry and Cell Biology Elective
2025-CBT-BSc 6 Mandatory
Chemistry and Biotechnology Elective
2025-CS-BSc 6 Mandatory
Computer Science Elective
2025-ECE-BSc 6 Mandatory
Electrical and Computer Engineering Elective
2025-ESSMER-BSc 6 Mandatory
Earth Sciences and Sustainable Management of Elective
Environmental Resources
2025-F-ACS-BSc 6 Mandatory
Applied Computer Science Elective
2025-GEM-BA 6 Mandatory
Global Economics and Management Elective
2025-IBA-BA 6 Mandatory
International Business Administration Elective
2025-IBA-Online-BA 6 Mandatory
International Business Administration (Online) Elective
2025-IRPH-BA 6 Mandatory
International Relations: Politics and History Elective
2025-ISCP-BA 6 Mandatory
Integrated Social and Cognitive Psychology Elective
2025-MCCB-BSc 6 Mandatory
Medicinal Chemistry and Chemical Biology Elective
2025-MDDA-BSc 6 Mandatory
Management, Decisions and Data Analytics Elective
2025-MMDA-BSc 6 Mandatory
Mathematics, Modeling, and Data Analytics Elective
2025-PHDS-BSc 6 Mandatory
Physics and Data Science Elective
2025-RIS-BSc 6 Mandatory
Robotics and Intelligent Systems Elective

177

2025-SDT-BSc 6 Mandatory
Software, Data and Technology Elective

Student Workload

Independent Study | 90
Online Lecture | 35
Total Hours | 125

Module Components Number Type cp

Agency, Leadership, and | CTNS-09 Lecture (Online) 5
Accountability

Module Description

Each of us is judged by the actions we undertake and held to account for the consequences of them.
Sometimes we may be lucky and our bad acts don't have harmful effects on others. Other times we
may be unlucky and reasonable decisions can lead to unexpected or unforeseen adverse consequences
for others. We are therefore held accountable both for choices and for outcomes. In either case,
accountability expresses the judgment that we bear responsibility for what we do and what happens
as a result. But our responsibility and our accountability in these cases is closely connected to the idea
that we have agency.

Agency presumes that we are the source of the choices we make and the actions that result from those
choices. For some, this may entail the idea that we have free will. But there is scientific world view
that holds that all actions are determined by the causes that explain them, which is the idea that if we
knew the causes of your decisions in advance, we would know the decision you would make even
before you made it. If that is so, how can your choice be free? And if it is not free, how can you be
responsible for it? And if you cannot be responsible, how can we justifiably hold you to account for it?

These questions express the centuries old questions about the relationship between free will and a
determinist world view: for some, the conflict between a scientific world view and a moral world view.

But we do not always act as individuals. In society we organize ourselves into groups: e.g. tightly
organized social groups, loosely organized market economies, political societies, companies, and more.
These groups have structure. Some individuals are given the responsibility of leading the group and of
exercising authority. But one can exercise authority over others in a group merely by giving orders
and threatening punishment for non-compliance.

Exercising authority is not the same thing as being a leader? For one can lead by example or by
encouraging others to exercise personal judgment and authority. What then is the essence of
leadership?

The module has several educational goals. The first is for students to understand the difference
between actions that we undertake for which we can reasonably held accountable and things that we
do but which we are not responsible for. For example, a twitch is an example of the latter, but so too
may be a car accident we cause as a result of a heart attack we had no way of anticipating or
controlling. This suggests the importance of control to responsibility. At the heart of personal agency

178

is the idea of control. The second goal is for students to understand what having control means. Some
think that the scientific view is that the world is deterministic, and if it is then we cannot have any
personal control over what happens, including what we do. Others think that the quantum scientific
view entails a degree of indeterminacy and that free will and control are possible, but only in the sense
of being unpredictable or random. But then random outcomes are not ones we control either. So, we
will devote most attention to trying to understand the relationships between control, causation and
predictability.

But we do not only exercise agency in isolation. Sometimes we act as part of groups and organizations.
The law often recognizes ways in which groups and organizations can have rights, but is there a way in
which we can understand how groups have responsibility for outcomes that they should be
accountable for. We need to figure out then whether there is a notion of group agency that does not
simply boil down to the sum of individual actions. We will explore the ways in which individual actions
lead to collective agency.

Finally we will explore the ways in which occupying a leadership role can make one accountable for
the actions of others over which one has authority.

Intended Learning Outcomes

No | Competence ILO

1 | Understand Understand and reflect how the social and moral world views that
rely on agency and responsibility are compatible, if they are, with
current scientific world views.

2 | Understand Understand how science is an economic sector, populated by large
powerful organizations that set norms, fund research agendas.
3 | Identify Identify the difference between being a leader of others or of a

group - whether a research group or a lab or a company - and being
in charge of the group.

4 | Learn Learn to be a leader of others and groups. Understand that when
one graduates one will enter not just a field of work but a heavily
structured set of institutions and that one's agency and
responsibility for what happens, what work gets done, its quality
and value, will be affected accordingly.

Indicative Literature

e Feinberg, Joel. "Doing & deserving; essays in the theory of responsibility." (1970).
e Hull, David L. "Science as a Process." Science as a Process. University of Chicago Press, 2010.

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

179

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Agency, Leadership, and | Written 120 100 45% 1-4
Accountability Examination Minutes

Module Achievement

180

8.2.1 Community Impact Project

Module Name Community Impact Project
Module Code 2025-CTNC-CIP-10
Module ECTS 5
Program Owner 2025-CT
(CONSTRUCTOR Track Area)

Module Coordinator CIP Faculty Coordinator
Study Semester
Program Semester | Status
2025-PHDS-BSc 5 Mandatory

Physics and Data Science Elective
2025-SDT-BSc 5 Mandatory

Software, Data and Technology Elective
2025-PHDS-BSc 6 Mandatory

Physics and Data Science Elective
2025-RIS-BSc 6 Mandatory

Robotics and Intelligent Systems Elective
2025-SDT-BSc 6 Mandatory

Software, Data and Technology Elective
Student Workload

Self-Organized Teamwork | 115
Introductory, Accompanying, and Final | 10
Events
Total Hours | 125

Module Components Number Type cp
Community Impact Project CTNC-10 Project 5

Module Description

CIPs are self-organized, major-related, and problem-centered applications of students’ acquired
knowledge and skills. These activities will ideally be connected to their majors so that they will
challenge the students’ sense of practical relevance and social responsibility within the field of their
studies. Projects will tackle real issues in their direct and/or broader social environment. These projects
ideally connect the campus community to other communities, companies, or organizations in a
mutually beneficial way.

Students are encouraged to create their own projects and find partners (e.g., companies, schools,
NGOs), but will get help from the CIP faculty coordinator team and faculty mentors to do so. They can
join and collaborate in interdisciplinary groups that attack a given issue from different disciplinary
perspectives. Student activities are self-organized but can draw on the support and guidance of both
faculty and the CIP faculty coordinator team.

181

Recommended Knowledge

- Basic knowledge of the main concepts and methodological instruments of the respective disciplines

- Develop or join a community impact project before the 5th or 6th semester based on the introductory
events during the 4th semester by using the database of projects, communicating with fellow students
and faculty, and finding potential companies, organizations, or communities to target.

Usability and Relationship to other Modules

Students who have accomplished their CIP (6th semester) are encouraged to support their fellow
students during the development phase of the next year’s projects (4th semester)

Intended Learning Outcomes

No | Competence ILO
1 | Understand Understand the real-life issues of communities, organizations, and
industries and relate them to concepts in their own discipline
2 | Enhance Enhance problem-solving skills and develop critical faculty, create
solutions to problems, and communicate these solutions
appropriately to their audience
3 | Apply Apply media and communication skills in diverse and non-peer social
contexts
4 | Develop Develop an awareness of the societal relevance of their own
scientific actions and a sense of social responsibility for their social
surroundings
5 | Reflect Reflect on their own behavior critically in relation to social
expectations and consequences
6 | Work Work in a team and deal with diversity, develop cooperation and

conflict skills, and strengthen their empathy and tolerance for
ambiguity

Indicative Literature

Entry Requirements

Prerequisites

2025-CTNC-CIP-10
Community Impact Project
At least 15 CP from CORE modules in the

major
Co-requisites None
Additional Remarks None

182

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for

Length Pass

Community Impact | Project not 100 All

Project Assessment numeric intended
ally learning
graded outcome
(pass/fail s of the
) module.

Module Achievement

183

8.3 Languages and Humanities Modules

8.3.1 Languages

The descriptions of the language modules are provided in a separate document, the “Language Module
Handbook” that can be accessed from the Constructor University’s Language & Community Center
internet sites (https://constructor.university/student-life/language-community-center/learning-

languages).

8.3.2 Humanities

8.3.3 Introduction to Visual Culture

Module Name Introduction to Visual Culture

Module Code 2025-CTHU-HUM-003

Module ECTS 2.5

Program Owner 2025-CT

(CONSTRUCTOR Track Area)

Module Coordinator Dr. Irina Chiaburu

Study Semester

Program Semester | Status

2025-BCCB-BSc 1 Mandatory
Biochemistry and Cell Biology Elective

2025-CBT-BSc 1 Mandatory
Chemistry and Biotechnology Elective

2025-CS-BSc 1 Mandatory
Computer Science Elective

2025-ECE-BSc 1 Mandatory
Electrical and Computer Engineering Elective

2025-ESSMER-BSc 1 Mandatory
Earth Sciences and Sustainable Management of Elective

Environmental Resources

2025-IBA-BA 1 Mandatory
International Business Administration Elective

2025-IEM-Online-BSc 1 Mandatory
Industrial Engineering & Management (Online) Elective

2025-IRPH-BA 1 Mandatory
International Relations: Politics and History Elective

2025-ISCP-BA 1 Mandatory
Integrated Social and Cognitive Psychology Elective

2025-MDDA-BSc 1 Mandatory
Management, Decisions and Data Analytics Elective

2025-MMDA-BSc 1 Mandatory
Mathematics, Modeling, and Data Analytics Elective

184

https://constructor.university/student-life/language-community-center/learning-languages
https://constructor.university/student-life/language-community-center/learning-languages

2025-PHDS-BSc

Mandatory

Physics and Data Science Elective
2025-RIS-BSc Mandatory
Robotics and Intelligent Systems Elective
2025-SDT-BSc Mandatory
Software, Data and Technology Elective
2025-BCCB-BSc Mandatory
Biochemistry and Cell Biology Elective
2025-CBT-BSc Mandatory
Chemistry and Biotechnology Elective
2025-CS-BSc Mandatory
Computer Science Elective
2025-ECE-BSc Mandatory
Electrical and Computer Engineering Elective
2025-ESSMER-BSc Mandatory
Earth Sciences and Sustainable Management of Elective

Environmental Resources
2025-GEM-BA Mandatory
Global Economics and Management Elective
2025-IBA-BA Mandatory
International Business Administration Elective
2025-I1BA-Online-BA Mandatory
International Business Administration (Online) Elective
2025-IEM-BSc Mandatory
Industrial Engineering & Management Elective
2025-1EM-Online-BSc Mandatory
Industrial Engineering & Management (Online) Elective
2025-IRPH-BA Mandatory
International Relations: Politics and History Elective
2025-ISCP-BA Mandatory
Integrated Social and Cognitive Psychology Elective
2025-MCCB-BSc Mandatory
Medicinal Chemistry and Chemical Biology Elective
2025-MDDA-BSc Mandatory
Management, Decisions and Data Analytics Elective
2025-MMDA-BSc Mandatory
Mathematics, Modeling, and Data Analytics Elective
2025-PHDS-BSc Mandatory
Physics and Data Science Elective
2025-RIS-BSc Mandatory
Robotics and Intelligent Systems Elective
2025-SDT-BSc Mandatory
Software, Data and Technology Elective

\ Student Workload

185

Independent Study | 45
Online Lecture | 17.5
Total Hours | 62.5

Module Components Number Type cp
Introduction to Visual Culture CTHU-003 Lecture (Online) 2.5

Module Description

Of the five senses, the sense of sight has for a long time occupied the central position in human
cultures. As John Berger has suggested this could be because we can see and recognize the world
around us before we learn how to speak. Images have been with us since the earliest days of the
human history. In fact, the earliest records of human history are images found on cave walls across the
world. We use images to capture abstract ideas, to catalogue and organize the world, to represent the
world, to capture specific moments, to trace time and change, to tell stories, to express feelings, to
better understand, to provide evidence and more. At the same time, images exert their power on us,
seducing us into believing in their 'innocence’, that is into forgetting that as representations they are
also interpretations, i.e., a particular version of the world.

The purpose of this course is to explore multiple ways in which images and the visual in general
mediate and structure human experiences and practices from more specialized discourses, e.g.,
scientific discourses, to more informal and personal day-to-day practices, such as self-fashioning in
cyberspace. We will look at how social and historical contexts affect how we see, as well as what is
visible and what is not. We will explore the centrality of the visual to the intellectual activity, from early
genres of scientific drawing to visualizations of big data. We will examine whether one can speak of
visual culture of protest, look at the relationship between looking and subjectivity and, most
importantly, ponder the relationship between the visual and the real.

This 2.5 CP module is part of a portfolio of several 2.5 CP modules designed to allow students to have
a wider choice of electives. To compensate for the smaller size of this module, the assessment is of
smaller scope.

Intended Learning Outcomes

No | Competence ILO
1 | Understand Understand a range of key concepts pertaining to visual culture, art
theory and cultural analysis.
2 | Understand Understand the role visuality plays in development and
maintenance of political, social, and intellectual discourses.
3 | Think Think critically about images and their contexts.
4 | Reflect Reflect critically on the connection between seeing and knowing.

Indicative Literature

e Berger, J.,, Blomberg, S., Fox, C., Dibb, M., & Hollis, R. (1973). Ways of seeing.

186

e Foucault, M. (2002). The order of things: an archaeology of the human sciences (Ser. Routledge
classics). Routledge.

e Hunt, L. (2004). Politics, culture, and class in the French revolution: twentieth anniversary
edition, with a new preface (Ser. Studies on the history of society and culture, 1). University

of California Press.

e Miller, V. (2020). Understanding digital culture (Second). SAGE.

e Thomas, N. (1994). Colonialism's culture: anthropology, travel and government. Polity Press.

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None
Assessment and Completion
Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Introduction to Visual | Written 60 100 45% 1-4
Culture Examination Minutes

Module Achievement

187

8.3.4 Introduction to the Philosophy of Science

Module Name Introduction to the Philosophy of Science
Module Code 2025-CTHU-HUM-002
Module ECTS 2.5
Program Owner 2025-CT
(CONSTRUCTOR Track Area)
Module Coordinator Dr. Eoin Ryan
Study Semester
Program Semester | Status
2025-BCCB-BSc 1 Mandatory
Biochemistry and Cell Biology Elective
2025-CBT-BSc 1 Mandatory
Chemistry and Biotechnology Elective
2025-CS-BSc 1 Mandatory
Computer Science Elective
2025-ECE-BSc 1 Mandatory
Electrical and Computer Engineering Elective
2025-ESSMER-BSc 1 Mandatory
Earth Sciences and Sustainable Management of Elective
Environmental Resources
2025-GEM-BA 1 Mandatory
Global Economics and Management Elective
2025-IBA-BA 1 Mandatory
International Business Administration Elective
2025-IBA-Online-BA 1 Mandatory
International Business Administration (Online) Elective
2025-IEM-Online-BSc 1 Mandatory
Industrial Engineering & Management (Online) Elective
2025-IRPH-BA 1 Mandatory
International Relations: Politics and History Elective
2025-ISCP-BA 1 Mandatory
Integrated Social and Cognitive Psychology Elective
2025-MCCB-BSc 1 Mandatory
Medicinal Chemistry and Chemical Biology Elective
2025-MDDA-BSc 1 Mandatory
Management, Decisions and Data Analytics Elective
2025-MMDA-BSc 1 Mandatory
Mathematics, Modeling, and Data Analytics Elective
2025-PHDS-BSc 1 Mandatory
Physics and Data Science Elective
2025-RIS-BSc 1 Mandatory
Robotics and Intelligent Systems Elective
2025-SDT-BSc 1 Mandatory
Software, Data and Technology Elective

188

2025-BCCB-BSc

Mandatory

Biochemistry and Cell Biology Elective
2025-CBT-BSc Mandatory
Chemistry and Biotechnology Elective
2025-CS-BSc Mandatory
Computer Science Elective
2025-ECE-BSc Mandatory
Electrical and Computer Engineering Elective
2025-ESSMER-BSc Mandatory
Earth Sciences and Sustainable Management of Elective

Environmental Resources
2025-IBA-BA Mandatory
International Business Administration Elective
2025-IBA-Online-BA Mandatory
International Business Administration (Online) Elective
2025-IEM-BSc Mandatory
Industrial Engineering & Management Elective
2025-IEM-Online-BSc Mandatory
Industrial Engineering & Management (Online) Elective
2025-IRPH-BA Mandatory
International Relations: Politics and History Elective
2025-ISCP-BA Mandatory
Integrated Social and Cognitive Psychology Elective
2025-MCCB-BSc Mandatory
Medicinal Chemistry and Chemical Biology Elective
2025-MDDA-BSc Mandatory
Management, Decisions and Data Analytics Elective
2025-MMDA-BSc Mandatory
Mathematics, Modeling, and Data Analytics Elective
2025-PHDS-BSc Mandatory
Physics and Data Science Elective
2025-RIS-BSc Mandatory
Robotics and Intelligent Systems Elective
2025-SDT-BSc Mandatory
Software, Data and Technology Elective

Student Workload
Independent Study | 45
Online Lecture | 17.5
Total Hours | 62.5
Module Components Number cp
Introduction to the Philosophy of | CTHU-002 Lecture (Online) 2.5

Science

189

Module Description

This humanities module will introduce students to some of the central ideas in philosophy of science.
Topics will include distinguishing science from pseudo-science, types of inference and the problem of
induction, the pros and cons of realism and anti-realism, the role of explanation, the nature of scientific
change, the difference between natural and social sciences, scientism and the values of science, as
well as some examples from philosophy of the special sciences (e.g., physics, biology).

The course aims to give students an understanding of how science produces knowledge, and some of
the various contexts and issues which mean this process is never entirely transparent, neutral, or
unproblematic. Students will gain a critical understanding of science as a human practice and
technology; this will enable them both to better understand the importance and success of science,
but also how to properly critique science when appropriate.

This 2.5 CP module is part of a portfolio of several 2.5 CP modules designed to allow students to have
a wider choice of electives. To compensate for the smaller size of this module, the assessment is of
smaller scope.

Intended Learning Outcomes

No | Competence ILO
1 | Understand Understand key ideas from the philosophy of science.
2 | Discuss Discuss different types of inference and rational processes.
3 | Describe Describe differences between how the natural sciences, social
sciences and humanities discover knowledge.
4 | Identify Identify ways in which science can be more and less value-laden.
5 | lllustrate Illustrate some important conceptual leaps in the history of science.

Indicative Literature

e James Ladyman, Understanding Philosophy of Science (2002).
e Paul Song, Philosophy of Science: Perspectives from Scientists (2022).
e Peter Godfrey-Smith Theory and Reality (2021)

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Introduction to the | Written 60 100 45% 1-5
Philosophy of Science Examination Minutes

190

Module Achievement

191

8.3.5 Introduction to Philosophical Ethics

Module Name

Introduction to Philosophical Ethics

Module Code 2025-CTHU-HUM-001
Module ECTS 2.5
Program Owner 2025-CT
(CONSTRUCTOR Track Area)
Module Coordinator Dr. Eoin Ryan
Study Semester
Program Semester | Status
2025-BCCB-BSc 1 Mandatory
Biochemistry and Cell Biology Elective
2025-CBT-BSc 1 Mandatory
Chemistry and Biotechnology Elective
2025-CS-BSc 1 Mandatory
Computer Science Elective
2025-ECE-BSc 1 Mandatory
Electrical and Computer Engineering Elective
2025-ESSMER-BSc 1 Mandatory
Earth Sciences and Sustainable Management of Elective
Environmental Resources
2025-IBA-BA 1 Mandatory
International Business Administration Elective
2025-IBA-Online-BA 1 Mandatory
International Business Administration (Online) Elective
2025-IEM-BSc 1 Mandatory
Industrial Engineering & Management Elective
2025-IEM-Online-BSc 1 Mandatory
Industrial Engineering & Management (Online) Elective
2025-IRPH-BA 1 Mandatory
International Relations: Politics and History Elective
2025-ISCP-BA 1 Mandatory
Integrated Social and Cognitive Psychology Elective
2025-MCCB-BSc 1 Mandatory
Medicinal Chemistry and Chemical Biology Elective
2025-MDDA-BSc 1 Mandatory
Management, Decisions and Data Analytics Elective
2025-MMDA-BSc 1 Mandatory
Mathematics, Modeling, and Data Analytics Elective
2025-PHDS-BSc 1 Mandatory
Physics and Data Science Elective
2025-RIS-BSc 1 Mandatory
Robotics and Intelligent Systems Elective
2025-SDT-BSc 1 Mandatory
Software, Data and Technology Elective

192

2025-BCCB-BSc

Mandatory

Biochemistry and Cell Biology Elective
2025-CBT-BSc Mandatory
Chemistry and Biotechnology Elective
2025-CS-BSc Mandatory
Computer Science Elective
2025-ECE-BSc Mandatory
Electrical and Computer Engineering Elective
2025-ESSMER-BSc Mandatory
Earth Sciences and Sustainable Management of Elective

Environmental Resources
2025-GEM-BA Mandatory
Global Economics and Management Elective
2025-IBA-BA Mandatory
International Business Administration Elective
2025-IBA-Online-BA Mandatory
International Business Administration (Online) Elective
2025-IEM-Online-BSc Mandatory
Industrial Engineering & Management (Online) Elective
2025-IRPH-BA Mandatory
International Relations: Politics and History Elective
2025-ISCP-BA Mandatory
Integrated Social and Cognitive Psychology Elective
2025-MCCB-BSc Mandatory
Medicinal Chemistry and Chemical Biology Elective
2025-MDDA-BSc Mandatory
Management, Decisions and Data Analytics Elective
2025-MMDA-BSc Mandatory
Mathematics, Modeling, and Data Analytics Elective
2025-PHDS-BSc Mandatory
Physics and Data Science Elective
2025-RIS-BSc Mandatory
Robotics and Intelligent Systems Elective
2025-SDT-BSc Mandatory
Software, Data and Technology Elective

Student Workload

Independent Study | 45

Online Lecture | 17.5

Total Hours | 62.5

Module Components

Number

Type

cp

Introduction to Philosophical Ethics

CTHU-001

Lecture (Online)

2.5

193

Module Description

The nature of morality - how to lead a life that is good for yourself, and how to be good towards others
- has been a central debate in philosophy since the time of Socrates, and it is a topic that continues to
be vigorously discussed. This course will introduce students to some of the key aspects of philosophical
ethics, including leading normative theories of ethics (e.g. consequentialism or utilitarianism,
deontology, virtue ethics, natural law ethics, egoism) as well as some important questions from
metaethics (are useful and generalizable ethical claims even possible; what do ethical speech and
ethical judgements actually do or explain) and moral psychology (how do abstract ethical principles do
when realized by human psychologies). The course will describe ideas that are key factors in ethics
(free will, happiness, responsibility, good, evil, religion, rights) and indicate various routes to progress
in understanding ethics, as well as some of their difficulties.

This 2.5 CP module is part of a portfolio of several 2.5 CP modules designed to allow students to have
a wider choice of electives. To compensate for the smaller size of this module, the assessment is of
smaller scope.

Intended Learning Outcomes

No | Competence ILO

1 | Describe Describe normative ethical theories such as consequentialism,
deontology and virtue ethics.

2 | Discuss Discuss some metaethical concerns.

3 | Analyze Analyze ethical language.

4 | Highlight Highlight complexities and contradictions in typical ethical
commitments.

5 | Indicate Indicate common parameters for ethical discussions at individual
and social levels.

6 | Analyze Analyze notions such as objectivity, subjectivity, universality,
pluralism, value.

Indicative Literature

e Mark van Roojen Metaethicas: A Contemporary Introduction (2015).
e Russ Shafer-Landay A Concise Introduction to Ethics (2019).
e Simon Blackburn Being Good (2009).

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

194

Assessment and Completion

Module Component Examination Duration | Weight Minimu | ILOs
Type or (%) m for
Length Pass
Introduction to | Written 60 100 45% 1-6
Philosophical Ethics Examination Minutes

Module Achievement

195

9 Appendix

9.1 Intended Learning Outcomes Assessment-Matrix

Software, Data and Technology BSc
v
g o
2 2
©]
c w0 2 8
s £ 5 2
£ 3 4 c &
£ 8 g < o g
£ 3 g = a £
s &5 & g 3 © o
£ &8 S 5 o o k4
1 5 sz @ 2 T T =
] w ® & E s < ® 2 s
£ o 3 5 € © £ 2 = @
2 £ =238 e 2 s E 2 € 8 4 2 5
S E § 5 2 2 £ £ o 2 E T 2% 2 2 2
S o 2 © £ 3§ 2 2 ¢ £ g £ o 2 °
= % & £ a g & 5 ¢ 2 < 3 o » E|g H
) g £ =2 £ & v o5 ®» £ g 2 8 c £ T |3 P
£ 55533w5<$z&83§§9ﬁg—g{,
= |5 I B = =
£ . E S E32F 3Ty is £l 22
e 2 § T 8 5 55§ c £ 3£ E S T2 o8|l & o§og
2 3 35 ¢ 25 8 3 &£ $ S E L F g E §ls = =2 3
9 ® 8 £ 8 2
E & £ 845 58 8382 =82 3885 & &85 6L5E
Semester 1 1 1 2 2 2 2 3 4 3 4 3 3 3 4 4 4 56|6 14 36 12
Mandatory/ mandatory elective m|me m m m meme m m m m me me me me me me me|m me me me
Credits 75|75 75]75]75]75]75]75 75 50 50 50 50 50 50 50 50 150 15 20 20 50
Competencies*
Program Learning Outcomes A E P S
work professionally in the field of software, Data and Technology
and enter graduate programs related to these fields x| x| x x| x| x| x| x x| x| x| x| x x x| x| x| x| x| x]|x
apply fundamental concepts of mathematics, statistics, and
computer science while solving data-related problems; x| x X X X X x| x| x X x | x X x| x| x
analyze at multiple levels of abstraction and use appropriate
mathematical and computational methods to model and analyze | x | x | x | x | x | x x | x| x x| x| x| x| x x| x| x ! x| x| x| x| x/|x
real-world problems;
develop, analyze and implement algorithms using modern
- X x x x| x| x X x| x| x x| x| x
software engineering methods and programming languages;
understand the characteristics of a range of computing platforms M M < | x « M M
and their advantages and limitations;
choose from multiple programming paradigms, languages and
algorithms to solve a given problem adequately; x| x X x| x| x x| x| x X X x | x
apply the necessary mathematical methods, such as linear
algebra, analysis, calculus, and discrete mathematics; X X x | x X x | x X X x | x| x
recognize the context in which data science and software systems
operate, including interactions with people and the physical x| x| x| x| x x X x | x x x | x| x x| x| x| x| x
world;
describe the state of published knowledge in the field of
software, Data and Technology and in a chosen specialization
(Machine Learning, Software Development, Programming x| x|x x x x x| x X XX x x| xpoxpxgx
Languages);
analyze and model real-life scenarios in organizations and
industries using contemporary techniques of data science and
software development, also taking methods and insights of other | X | X | X X X x| x X | x| xfx X[X | x| XX X X X
disciplines into account;
appropriately communicate solutions of problems in software,
Data and Technology in both spoken and written form to x| x!x M X X x | x
specialists and non-specialists;
draw scientifically founded conclusions that consider social,
. x x| x|x| x| x| x|x]x x [x| x| x|x x| x| x| x| x| x| x|x|x]x
professional, scientific, and ethical aspects;
work effectively in a diverse team and take responsibility in a
team: x| x| x|x|x x x | x| x| x]|x
take responsibility for their own learning, personal and
professional development and role in society, reflecting on their x| x| x| x
practice and evaluating critical feedback;
adhere to and defend ethical, scientific, and professional
standards; X x| x|x X | x| x
Assessment Type
Written examination X X X X X X X X X X X X X X XX X X
Term paper
Essay X X
Project report
Poster presentation
Laboratory report
Program Code X X X X X X X X X
Oral examination
Presentation X X
Practical Assessments
Project Assessments X
Portfolio Assessments X X
Bachelor Thesis X
Module achievements X X X X X

*Competencies: A-scientific/academic proficiency; E-competence for qualified employment; P-development of personality; S-competence for engagement in society

196

	1 Program Overview
	1.1 Concept
	1.1.1 The Constructor University Educational Concept
	1.1.2 Program Concept

	1.2 Specific Advantages of Software, Data and Technology at Constructor University
	1.3 Program-Specific Educational Aims
	1.3.1 Qualification Aims
	1.3.2 Intended Learning Outcomes

	1.4 Career Options and Support
	1.5 Admission Requirements
	1.6 More information and contacts

	2 The Curricular Structure
	2.1 General
	2.2 The Constructor University 4C Model
	2.2.1 Year 1 – CHOICE
	2.2.2 Year 2 – CORE
	Minor Option

	2.2.3 Year 3 – CAREER
	Internship / Start-up and Career Skills Module
	Specialization Modules
	Study Abroad
	Bachelor Thesis/Seminar Module

	2.3 The CONSTRUCTOR Track
	2.3.1 Methods Modules
	2.3.2 New Skills Modules
	2.3.3 German Language and Humanities Modules

	3 Software Development as a minor
	3.1 Qualification Aims
	3.2 Intended Learning Outcomes
	3.3 Module Requirements
	3.4 Degree

	4 Software, Data and Technology Undergraduate Program Regulations
	4.1 Scope of these Regulations
	4.2 Examination Concept
	4.3 Degree
	4.4 Graduation Requirements

	5 Schematic Study Plan for Software, Data and Technology
	6 Study and Examination Plan
	7 Software, Data and Technology Modules
	7.1.1 Programming in C and C++
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	7.1.2 Industrial Programming with Python
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	7.1.3 Analysis
	Module Description
	Usability and Relationship to other Modules
	Recommended Knowledge
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	7.1.4 Linear Algebra
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	7.1.5 Digital Systems and Computer Architecture
	Module Description
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	7.1.6 Development in JVM Languages
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	7.1.7 Core Algorithms and Data Structures
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	7.1.8 Mathematical Foundations of Computer Science
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	7.1.9 Operating Systems
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	7.1.10 Functional Programming
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	7.1.11 Scientific Data Analysis
	Module Description
	Recommended Knowledge
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	7.1.12 Advanced Algorithms and Data Structures
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	7.1.13 Machine Learning
	Module Description
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	7.1.14 Discrete Mathematics
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	7.1.15 Artificial Intelligence
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	7.1.16 Software Engineering and Design
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	7.1.17 Database Fundamentals
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	7.1.18 Deep Learning
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	7.1.19 Stochastic Modeling and Financial Mathematics
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	7.1.20 Optimization Methods
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	7.1.21 Natural Language Processing
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	7.1.22 Distributed Algorithms
	Module Description
	Recommended Knowledge
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	7.1.23 Computer Networks
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	7.1.24 Databases Internals
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	7.1.25 Integrated Development and IT Operations
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	7.1.26 Parallel Programming
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	7.1.27 Formal Languages and Parsers
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	7.1.28 Compilers
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	7.1.29 Semantics of Programming Languages
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	7.1.30 Advanced Discrete Mathematics
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	7.1.1 Internship / Startup and Career Skills
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	7.1.1 Bachelor Thesis and Seminar SDT
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	8 Constructor Track Modules
	8.1 Methods Modules
	8.1.1 Elements of Linear Algebra
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	8.1.2 Elements of Calculus
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	8.1.3 Matrix Algebra and Advanced Calculus I
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	8.1.4 Matrix Algebra and Advanced Calculus II
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	8.1.5 Probability and Random Processes
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	8.1.6 Statistics and Data Analytics
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	8.2 New Skills Modules
	8.2.1 Logic (perspective I)
	Module Description
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	8.2.2 Logic (perspective II)
	Module Description
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	8.2.3 Causation and Correlation (perspective I)
	Module Description
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	8.2.4 Causation and Correlation (perspective II)
	Module Description
	Recommended Knowledge
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	8.2.5 Linear Model and Matrices
	Module Description
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	8.2.6 Complex Problem Solving
	Module Description
	Recommended Knowledge
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	8.2.7 Argumentation, Data Visualization and Communication (perspective I)
	Module Description
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	8.2.8 Argumentation, Data Visualization and Communication (perspective II)
	Module Description
	Recommended Knowledge
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	8.2.9 Agency, Leadership, and Accountability
	Module Description
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	8.2.1 Community Impact Project
	Module Description
	Recommended Knowledge
	Usability and Relationship to other Modules
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	8.3 Languages and Humanities Modules
	8.3.1 Languages
	8.3.2 Humanities
	8.3.3 Introduction to Visual Culture
	Module Description
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	8.3.4 Introduction to the Philosophy of Science
	Module Description
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	8.3.5 Introduction to Philosophical Ethics
	Module Description
	Intended Learning Outcomes
	Indicative Literature
	Entry Requirements
	Assessment and Completion
	Module Achievement

	9 Appendix
	9.1 Intended Learning Outcomes Assessment-Matrix

