Analysis and Mathematical Physics

Image
slide_expl_vcampus3_ohne.jpg
Group leader
Nikolai Leopold profile image
Assistant Professor of Applied Mathematics
Specific themes and goals

The research group studies the properties of effective evolution equations and justifies their validity as approximate descriptions of complex many-body quantum systems. Special emphasis is given to the derivation of mean-field and kinetic equations from the dynamics of fermionic systems and their interactions with the electromagnetic field.

Selected publications
  • Norm approximation for the Fröhlich dynamics in the mean-field regime, N. Leopold, J. Funct. Anal. 285(4), 109979 (2023), DOI: 10.1016/j.jfa.2023.109979.
  • Propagation of moments for large data and semiclassical limit to the relativistic Vlasov equation, N. Leopold and C. Saffirio, SIAM J. Math. Anal. 55(3), 1676-1706 (2023), DOI: 10.1137/22M14936.
  • Landau-Pekar equations and quantum fluctuations for the dynamics of a strongly coupled polaron, N. Leopold, D. Mitrouskas, S. Rademacher, B. Schlein and R. Seiringer, Pure Appl. Anal. 3(4), 653-676 (2021), DOI: 10.2140/paa.2021.3.653.
  • The Landau-Pekar equations: Adiabatic theorem and accuracy, N. Leopold, S. Rademacher, B. Schlein and R. Seiringer, Anal. PDE 14(7), 2079-2100 (2021), DOI: 10.2140/apde.2021.14.2079.
  • Derivation of the Maxwell-Schrödinger Equations from the Pauli-Fierz Hamiltonian, N. Leopold and P. Pickl, SIAM J. Math. Anal. 52(5), 4900-4936 (2020), DOI: 10.1137/19M1307639.
  • Derivation of the Time Dependent Gross-Pitaevskii Equation in Two Dimensions, M. Jeblick, N. Leopold and P. Pickl, Commun. Math. Phys. 372, 1–69 (2019), DOI: 10.1007/s00220-019-03599-x.