Image
Prof. Dr. Elke Nevoigt
Professor of Molecular Biotechnology
School of Science
Constructor University Bremen gGmbH
Campus Ring 1 | 28759 Bremen | Germany
Campus Ring 1 | 28759 Bremen | Germany
Phone number
+49 421 200-3541
Fax number
+49 421 200-3249
Email Address
enevoigt@constructor.university
Office
Research II, Room 113
Research Interests
An important focus of my laboratory during recent years has been the improvement of glycerol utilization by the yeast Saccharomyces cerevisiae. Due to its higher reducing power compared to sugars, we consider glycerol is an attractive carbon source for the fermentative production of chemicals. Another advantage of glycerol is that it does not exert the so-called Crabtree effect (ethanol production in the presence of oxygen) in wild-type S. cerevisiae strains. The latter characteristic of glycerol can be considered as an advantage for the production of biomass-related products such as proteins. Glycerol is a renewable carbon source and can, for example, be obtained from oil-plant biorefineries.
The initial challenge in terms of using glycerol as a carbon source for S. cerevisiae was that wild-type strains of this species utilize glycerol present in synthetic medium at very low rates if at all. Our group has been successful to greatly improve glycerol utilization in S. cerevisiae without the addition of complex medium supplements (Swinnen et al., 2016; Ho et al., 2017; Klein et al., 2016a).
To allow the fermentation of glycerol, we replaced the native glycerol catabolic FAD-dependent pathway by an NAD+-dependent one (Klein et al. 2016b). This pathway replacement will now enable us to make use of the additional reducing power of glycerol for the production of fermentation products.
In addition to establishing and improving product formation and substrate consumption pathways, we have also focused on the improvement of yeast’s stress tolerance for industrial applications based on renewable resources. For example, we have shed more light to the phenotype of improved acetic acid tolerance in S. cerevisiae (Swinnen et al., 2014; Fernandez-Nino et al., 2015; González-Ramos et al., 2016; Swinnen et al., 2016). Acetic acid is an inhibitor of microbial growth and inherently present in hydrolysates of lignocellulosic (non-edible) plant biomass.
University Education
Technische Universitat Berlin
Habilitation, Microbiology and Genetics
2000 - 2007
Technische Universitat Berlin
PhD, Biology
1992 - 1996
Humboldt-Universitat zu Berlin
Diplom, Biology
1985 - 1990
Funded Projects
Current projects:
Metabolic engineering of baker’s yeast for more efficient respiratory and fermentative glycerol utilization http://gepris.dfg.de/gepris/projekt/280177596 |
Finalized projects:
YEASTDOC Yeast Biotechnology Doctoral Training Programme https://yeastdoc.eu/ | Academic Partners: University College Cork (coordinator) INRA Montpellier Jacobs University Bremen University of Leicester University of Milano-Bicocca University of Minho Partners from industry: Lallemand, Heineken, Biotrend, Novamont, ACIB, Organobalance, Pernod-Ricard, EMLBEM |
Eco2Phy Development of an environmentally friendly process for the production of phytase to reduce phosphorus emissions in livestock farming* | Academic partners: Jacobs University Bremen Partners from industry: Kaesler Nutrition GmbH (coordinator) |
YEASTPEC Engineering of the yeast Saccharomyces cerevisiae for bioconversion of pectin-containing agro-industrial side-streams http://www.era-ib.net/yeastpec | Academic partners: Jacobs University Bremen (coordinator) Technical University Lisbon TU Munich VTT Technical Research Centre of Finland Ltd Partners from industry: GlobalYeast |
IPCRES Integrated Process and Cell Refactoring Systems for Enhanced Industrial Biotechnology http://www.era-ib.net/ipcres | Academic partners: University College London (coordinator) Autonomous University of Barcelona Jacobs University Bremen Technical University of Denmark University of Strathclyde Partners from industry: Ingenza, SilicoLife, BioProdict |
INTACT Integral Engineering of Acetic Acid Tolerance in Yeast http://www.era-ib.net/intact | Academic partners: Delft University of Technology (coordinator) Autonomous University of Barcelona Jacobs University Technical University Lisbon |
*Eco2Phy Phytase is an industrial enzyme most commonly used in the feed for monogastric animals (e.g. pigs, poultry, farm fish). The benefits of adding phytase to feed are well recognized. For example, it enhances the nutritive value of plant material by liberation of inorganic phosphate from phytic acid. The latter is a usual phosphate storage compound in plants, but the phosphate cannot be used by livestock that lacks sufficient activity of an endogenous phytase. The action of phytase on phytic acid reduces the need of adding inorganic phosphate to the feed. This has also positive consequences on the excretion of inorganic phosphate to the environment known to contribute to the eutrophication of waters. The Eco2Phy project is a cooperation between the Kaesler Nutrition GmbH (Bremerhaven) and Jacobs University Bremen. Currently, phytase is produced by making use of the microbial yeast cell factory Komagataella phaffii and methanol as the source of carbon. The contribution of our research group in the framework of the Eco2Phy project was to engineer the yeast with the goal to efficiently produce phytase from glycerol as the sole source of carbon. The goal was to establish a methanol-independent more environmentally friendly production process. The project was funded by the European Fund for Regional Development (ERDF) and the BIS Bremerhaven Society for Investment Promotion and Urban Development mbH.
Selected Publications
International peer-reviewed publications
Gyurchev, N.Y., Coral-Medina, Á., Weening, S.M., Almayouf, S., Kuijpers, N.G.A., Nevoigt, E., Louis, E.J. (2022) Beyond Saccharomyces pastorianus for modern lager brews: Exploring non-cerevisiae Saccharomyces hybrids with heterotic maltotriose consumption and novel aroma profile. Front. Microbiol. 13, in press
Rendulić, T., Mendonça Bahia, F., Soares-Silva, I. Nevoigt, E., Casal, M. (2022) The dicarboxylate transporters from the AceTr family and Dct-02 oppositely affect succinic acid production in S. cerevisiae. J. Fungi, 822.
Malubhoy, Z., Mendonça Bahia, F., de Valk, S.C., de Hulster, E., Rendulić, T., Ragas Ortiz, J.P., Xiberras, J., Klein, M., Mans, R., Nevoigt, E. (2022) Carbon dioxide fixation via production of succinic acid from glycerol in engineered Saccharomyces cerevisiae. Microb. Cell Fact. 21, 102.
Perpelea, A., Martins L.C., Wijaya, A.W., Rippert, D., Klein, M., Angelov, A., Peltonen, K., Teleki, A., Liebl, W., Richard, P., Thevelein, J.M., Takors, R., Sá-Correia, I., Nevoigt, E. (2022) Towards valorization of pectin-rich agro-industrial residues: engineering of Saccharomyces cerevisiae for co-fermentation of D-galacturonic acid and glycerol. Metab. Eng. 69, 1-14
Rippert, D., Linguardo, F., Perpelea, A., Klein, M., Nevoigt, E. (2021) Identification of the Aldo-Keto Reductase responsible for D-galacturonic acid conversion to L-galactonate in Saccharomyces cerevisiae. J. Fungi 7, 914.
Martins, L., Palma, M. Angelov A., Nevoigt, E., Liebl W., Sá-Correia, I. (2021) Complete Utilization of the Major Carbon Sources Present in Sugar Beet Pulp Hydrolysates by the Oleaginous Red Yeasts Rhodotorula toruloides and R. mucilaginosa. J. Fungi 7, 215.
Xiberras, J., Klein, M., de Hulster, E., Mans, R., Nevoigt, E. (2020) Engineering Saccharomyces cerevisiae for succinic acid production from glycerol and carbon dioxide. Front. Bioeng. Biotechnol. 8, 566.
Xiberras, J., Klein, M., Prosch, C., Malubhoy, Z., Nevoigt, E. (2019) Anaplerotic reactions active during growth of Saccharomyces cerevisiae on glycerol. FEMS Yeast Res. 20.
Aßkamp, M.R., Klein, M., Nevoigt, E. (2019) Saccharomyces cerevisiae exhibiting a modified route for uptake and catabolism of glycerol forms significant amounts of ethanol from this carbon source considered as 'non-fermentable'. Biotechnol. Biofuels. 12: 257.
Aßkamp, M.R., Klein, M., Nevoigt, E. (2019) Involvement of the external mitochondrial NADH dehydrogenase Nde1 in glycerol metabolism by wild-type and engineered Saccharomyces cerevisiae strains. FEMS Yeast Res. 19.
Xiberras, J., Klein, M., Nevoigt, E. (2019) Glycerol as a substrate for Saccharomyces cerevisiae based bioprocesses - Knowledge gaps regarding the central carbon catabolism of this 'non-fermentable' carbon source. Biotechnol Adv. 37, 107378
John, W.A., Böttcher, N.L., Aßkamp, M., Bergounhou, A., Kumari, N., Ho, P.-W., D'Souza, R.N., Nevoigt, E., Ullrich, M.S. (2019) Forcing fermentation: Profiling proteins, peptides and polyphenols in lab-scale cocoa bean fermentation. Food Chem. 78, 786-794.
Fernández-Niño, M., Pulido, S., Stefanoska, D., Pérez, C., González-Ramos, D., van Maris, A.J.A., Marchal, K., Nevoigt, E, Swinnen, S. (2018) Identification of novel genes involved in acetic acid tolerance of Saccharomyces cerevisiae using pooled-segregant RNA sequencing. FEMS Yeast Res. 18.
Ho, P.-W., Klein, M., Futschik, M., Nevoigt, E. (2018) Glycerol positive promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae. FEMS Yeast Res. 18.
Islam, Z.U., Klein, M., Ødum, A.S.R., Nevoigt, E. (2017) A modular metabolic engineering approach for the production of 1,2-propanediol from glycerol by Saccharomyces cerevisiae. Metab. Eng. 44, 223-235.
Swinnen, S., Henriques, S.F., Shrestha, R., Ho, P.-W., Sá-Correia, I., Nevoigt, E. (2016) Improvement of yeast tolerance to acetic acid through Haa1 transcription factor engineering: towards the underlying mechanisms. Microb. Cell Fact. 16, 7.
Ho, P.-W., Swinnen, S., Duitama, J., Nevoigt, E. (2017) The sole introduction of two single point mutations establishes glycerol growth in Saccharomyces cerevisiae CEN.PK derivatives. Biotechnol. Biofuels. 10, 10.
Klein, M., Swinnen, S., Thevelein, J.M., Nevoigt, E. (2017) Glycerol metabolism and transport in yeast and fungi: established knowledge and ambiguities. Invited minireview for Environ. Microbiol. 19, 878-893.
Swinnen, S., Henriques, S.F., Shrestha, R., Ho, P.-W., Sá-Correia, I., Nevoigt, E. (2016) Improvement of yeast tolerance to acetic acid through Haa1 transcription factor engineering: towards the underlying mechanisms. Microb. Cell Fact. 16, 7.
Klein, M., Carrillo, M., Xiberras, J., Islam, Z.-U., Swinnen, S., Nevoigt, E. (2016) Towards the exploitation of glycerol’s high reducing power in Saccharomyces cerevisiae-based bioprocesses. Metab. Eng. 38, 464-472.
Klein, M., Islam, Z.U., Boldsen Knudsen, P., Carrillo, M., Swinnen, S., Workman, M., Nevoigt, E. (2016) The expression of glycerol facilitator homologues from various yeast species improves growth on glycerol of Saccharomyces cerevisiae. Metab. Eng. Commun. 3, 252-257.
González-Ramos, D., Gorter de Vries, A.R., Grijseels, S.S., van Berkum, M.C., Swinnen, S., van den Broek, M., Nevoigt, E., Daran, J.M., Pronk, J.T., van Maris, A.J. (2016) A new laboratory evolution approach to select for constitutive acetic acid tolerance in Saccharomyces cerevisiae and identification of causal mutations. Biotechnol. Biofuels 9, 173.
Swinnen, S., Ho, P.-W., Klein, M., Nevoigt, E. (2016) Genetic determinants for enhanced glycerol growth of Saccharomyces cerevisiae. Metab. Eng. 36, 68-79.
Fernández Niño, M., Marquina, M, Swinnen, S., Rodríguez-Porrata, B., Nevoigt, E., Ariño, J. (2015) Cytosolic pH of individual Saccharomyces cerevisiae cells is a key factor for acetic acid tolerance. Appl. Environ. Microbiol. 81, 7813-21.
Hubmann, G., Thevelein, J.M. and Nevoigt, E. (2014) Natural and modified promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae. Methods Mol. Biol. 1152, 17-42.
Swinnen, S., Fernández Niño, M., González-Ramos, D., van Maris, A. J. A., Nevoigt, E. (2014) The fraction of cells that resume growth after acetic acid addition is a strain‑dependent parameter of acetic acid tolerance in Saccharomyces cerevisiae. FEMS Yeast Res. 14, 642-53.
Swinnen, S., Klein, M., Carrillo, M., McInnes, J., Nguyen, H.T.T., and Nevoigt, E. (2013) Re-evaluation of glycerol utilization in the species Saccharomyces cerevisiae: characterization of an isolate which grows on glycerol without supporting supplements. Biotechnol. Biofuels 6, 157.
McInnes, J., Rehders, M., McFaline-Figueroa, J. R., Brix K., Pon, L.A., Nevoigt, E. (2013) Defects in mitochondrial distribution during the prolonged lag phase of Saccharomyces cerevisiae preceding growth in glycerol as the sole source of carbon. FEMS Yeast Res. 13, 706-10.
Hubmann, G., Mathé, L., Foulquié-Moreno, M.R, Duitama, J., Nevoigt, E. and Thevelein, J.M. (2013) Identification of multiple interacting alleles conferring low glycerol and high ethanol yield in Saccharomyces cerevisiae ethanolic fermentation. Biotechnol. Biofuels 6, 87.
Pagliardini, J., Hubmann, G., Alfenore, S., Nevoigt, E., Bideaux, C., Guillouet, S.E. (2013) The metabolic costs of improving ethanol yield by reducing glycerol formation capacity under anaerobic conditions in Saccharomyces cerevisiae. Microb. Cell Fact. 12, 26.
Hubmann, G., Nevoigt, E., Martins Pais, T., Foulquie y Moreno, M. R., Thevelein, J.M. (2013) Quantitative trait analysis of yeast biodiversity yields novel gene tools for metabolic engineering. Metab. Eng. 17, 68-81.
Swinnen S., Thevelein, J.M., Nevoigt, E. (2012) Genetic mapping of quantitative phenotypic traits in S. cerevisiae. Invited review for FEMS Yeast Res. 12, 215-227.
Duong, C. T. Strack, L. Futschik, M. Katou, Y. Nakao, Y. Fujimura, T. Shirahige, K. Kodama, Y. Nevoigt, E. (2011) Identification of Sc‑type ILV6 as a target to reduce diacetyl formation in lager brewers’ yeast. Metab. Eng. 13, pp. 638-647.
Hubmann, G., Guillouet, S., Nevoigt, E. (2011) Gpd1 and Gpd2 fine tuning for sustainable reduction of glycerol formation in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 77, 5857–5867.
Tyo, K.E.J., Nevoigt E., Stephanopoulos, G. (2011) Directed evolution of promoters and tandem gene arrays for customizing RNA synthesis rates and regulation. Methods Enzymol. 497, 135-55.
Pagliardini, J., Hubmann, G., Bideaux, C., Alfenore, S., Nevoigt, E. and Guillouet, S. E. (2010) Quantitative evaluation of yeast's requirement for glycerol formation in Very High Ethanol Performance fed-batch process. Microb. Cell Fact. 9, 36-48.
Saerens, S.M.G., Duong, C.T. and Nevoigt, E. (2010) Genetic improvement of brewers’ yeast: current state, perspectives and limits. Appl. Microbiol. Biotechnol. 86, 1195-1212.
Nguyen, H.T.T. and Nevoigt, E. (2009) Production of DHA in Saccharomyces cerevisiae: a proof of principle. Metab. Eng. 11, 335-46.
Nevoigt, E. (2008) Progress in metabolic engineering of the yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 72, 379-412.
Donalies, U.E.B., Nguyen, H.T.T., Stahl, U. and Nevoigt, E. (2008) Improvement of Saccharomyces yeast strains used in brewing, wine making and baking. In: Stahl, U., Donalies, U.E.B., Nevoigt, E. (eds.) Adv. Biochem. Eng. Biotechnol. 111, 67-98.
Nguyen, H.T.T., Popp, A. , Boulahya, K., Bideaux, C., Alfenore, S., Guillouet, and Nevoigt, E. (2008) Fermentative production of L-glycerol 3-phosphate utilizing a Saccharomyces cerevisiae strain with engineered glycerol biosynthetic pathway. Biotechnol. Bioeng. 100, 497-505.
Nevoigt, E., Fischer, C., Mucha, O., Matthäus, F., Stahl, U. and Stephanopoulos, G. (2007) Engineering promoter regulation. Biotechnol. Bioeng. 96, 550-558.
Alper, H., Moxley, J., Nevoigt, E., Fink, G. R., and Stephanopoulos, G. (2006) Engineering yeast transcription machinery for improved bioethanol tolerance and production. Science 314, 1565-1568.
Fischer, C., Alper, H., Nevoigt, E., Jensen, K.L. and Stephanopoulos, G. (2006) Response to Hammer et al.: Tuning genetic control - importance of thorough promoter characterization versus generating promoter diversity. Trends Biotechnol. 22 ,55-56.
Nevoigt, E., Kohnke, J., Alper, H., Fischer, C., Stahl, U. and Stephanopoulos, G. (2006) A collection of promoter replacement cassettes for tuning gene expression in yeast. Appl. Environ. Microbiol. 72, 5266-73.
Selected for ASM Journal Highlights (Microbe, 10/2006).
Alper, H., Fischer, C., Nevoigt, E. and Stephanopoulos, G. (2005) Tuning Genetic Control through Promoter Engineering. Proc. Natl. Acad. Sci. U.S.A 102, 12678-12683.
Nguyen, H.T.T., Dieterich, A., Athenstaedt, K., Truong, N.H., Stahl, U. and Nevoigt, E. (2004) Engineering of Saccharomyces cerevisiae for the production of L-glycerol 3-phosphate. Metab. Eng. 6, 155-163
Nevoigt, E., Pilger, R., Mast-Gerlach, E., Schmidt, U., Freihammer, S., Eschenbrenner, M., Garbe, and Stahl, U. (2002) Engineered brewing yeasts overproducing glycerol at the expense of ethanol. FEMS Yeast Res. 2, 225-232.
Nevoigt, E., Fassbender, A. and Stahl, U. (2000) Cells of the yeast Saccharomyces cerevisiae are transformable by DNA under non-artificial conditions. Yeast 16, 1107-1110.
Nevoigt, E. and Stahl, U. (1997) Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol. Rev. 21, 231-241.
Nevoigt, E. and Stahl, U. (1996) Reduced pyruvate decarboxylase (PDC) and increased glycerol-3-phosphate dehydrogenase [NAD+] (GPD) levels enhance glycerol production in Saccharomyces cerevisiae.Yeast 12, 1331-1337.
Bernhardt, R., Uhlmann, H., Nevoigt, E., Vogel, R., Beckert, V., Schwarz, D. and Henning, M. (1992) Expression systems for the components of mitochondrial steroid hydroxylases. J. Basic Clin. Physiol. Pharmacol. 3, 115.
Book Contributions
Leisegang, R., Nevoigt, E., Spielvogel, A., Kristan, G., Niederhaus, A. and Stahl, U. (2006) Fermented food production using genetically modified yeast and filamentous fungi. In Heller, K. J. (ed.) Genetically Engineered Food. 2nd Edition, Wiley-VCH, Weinheim, ISBN: 3-527-31393-1
German Journals
Nguyen, H.T.T., Dieterich, A., Stahl, U., and Nevoigt, E. (2003) Genetische Optimierung der Bäckerhefe zur Produktion von L-Glycerol-3-Phosphat. Transkript Sonderheft Nachhaltige Biokatalyse, 47-49.
Nevoigt, E., Nguyen, H.T.T., Stahl, U. (2001) Biotechnologische Produktion von L-Glycerol-3-Phosphat. Biospektrum Sonderausgabe "Biokatalyse", 33-35.
Editorial work
Meyer, V., Nevoigt, E., Wiemann P. (2016) The Era of Synthetic Biology in Yeast and Filamentous Fungi, Fungal Genet. Biol. 86
Alper, H., Cirino, P., Nevoigt, E., Sriram, G. (2011) Applications of synthetic biology in microbial biotechnology. J. Biomed. Biotechnol.
Stahl, U., Donalies, U.E.B., Nevoigt, E. (2008) Food biotechnology, Adv. Biochem. Eng. Biotechnol. 111.
Patents
Nevoigt, E. (2016) Gentechnisch veränderte Hefe zur Fermentation von Glycerol.
Nevoigt, E. (2014) Gentechnisch veränderte Hefe mit verbessertem Glycerol-Katabolismus. DE102014109858 (A1), Priority date: 14.07.2014.
Nevoigt, E., C. Bideaux, S. Alfenore, S. E. Guillouet (2007) Method of modifying a yeast cell for the production of ethanol. WO2009056984 (A1), Priority date: 29.10.2007.
→ 2015 wurden die Rechte an DuPont Danisco verkauft
Alper, H., Fischer, C., Nevoigt, E. and Stephanopoulos, G. (2006) Promoter engineering and genetic control. WO2007079428 (A3), Priority date: 03.01.2006.
Alper, H., Fischer, C., Nevoigt, E. and Stephanopoulos, G. (2005) Promoter engineering and genetic control. Internationale Patentanmeldung: WO2006116400 (A3), Priority date: 27.04.2005.
Lang, C., Gessner, R., Neukamm, B., Prinz, B., Nevoigt, E. (2003) Screening method for discovering auxiliary promoting endocytosis. Internationale Patentanmeldung: WO0216935 (A9), Priority date: 23.08.2000.
Publications on Scopus
Work Experience
- Since 07/2022 Full Professor of Molecular Biotechnology, School of Science, Constructor University (former Jacobs University) Bremen, Germany
- 11/2009-06/2022 Associate Professor of Molecular Biotechnology, School of Science, Constructor University (former Jacobs University) Bremen, Germany
- 02/2008-10/2009 Expert scientist at VIB, Dept. Molecular Microbiology & KU Leuven, Lab. for Molecular Cell Biology, Belgium
- 06/2004-03/2005 Visiting scientist at MIT, Department of Chemical Engineering, USA
- 05/1996-01/2008 Post-Doctoral Research Scientist, Berlin University of Technology, Department of Microbiology and Genetics, Germany
- 01/1992-04/1996 Ph.D. research, Department of Microbiology and Genetics, Berlin University of Technology,
- 08/1990 Degree in Biology, Humboldt University Berlin, Germany