Image
Photo of John Torsten

Prof. Dr. Torsten John

Assistant Professor of Physical Chemistry
School of Science
Constructor University Bremen gGmbH
Campus Ring 1 | 28759 Bremen | Germany
Phone number
+49 421 200-3555
Fax number
+49 421 200-3249
Email Address
tjohn@constructor.university
Office
Research II, Room 55
Research Interests

At the Biomolecular Systems and Design Lab, we focus on understanding and engineering the dynamic behavior of biomolecules in complex environments. Our research sits at the interface of biophysical and computational chemistry, where we integrate experimental techniques and theoretical models to reveal the fundamental principles of biomolecular interactions and self-assembly. This molecular-level insight is crucial for advancing the design of bionanomaterials.

 

By investigating how biomolecules assemble and interact—both in solution and at interfaces such as membranes and nanoparticles—we aim to drive innovations in areas like neurodegenerative diseases, nanomedicine, viral infection, and antimicrobial strategies.

 

Research Focus

  • Self-Assembly: Understanding the mechanisms of peptide self-assembly with an emphasis on the bio-nano-interface.
  • Membrane Interactions: Studying peptide behavior in biomimetic membranes to inform novel strategies for antimicrobial activity and viral infection.
  • Bionanomaterials: Designing peptide fibrils and the surface properties of viral-like particles for biomedical applications.

Our group leverages a synergy of theory and experiment, using computational chemistry to guide experimental design and gain a deeper understanding of biomolecular systems.

University Education
2020PhD (Dr. rer. nat.), Chemistry
Leipzig University (Germany)
summa cum laude
2015Master of Science, Chemistry
Leipzig University (Germany)
2012Bachelor of Science, Chemistry
Leipzig University (Germany)
Work Experience
Jun 2023 - Aug 2024Postdoctoral Researcher
Max Planck Institute for Polymer Research
Mainz, Germany
Nov 2020 - May 2023Postdoctoral Researcher
Department of Biological Engineering, Massachussets Institue of Technology (MIT)
Cambridge, MA, USA
Feb 2020 - Oct 2020Postdoctoral Researcher
Leibniz Institute of Surface Engineering (IOM)
Leipzig, Germany
Jul 2015 - Feb 2020Graduate Research Assistant
Leibniz Institute of Surface Engineering (IOM)
Leipzig, Germany
Jan 2018 - Jul 2018
Aug 2016 - Mar 2017
Visiting Research Fellow
School of Chemistry, Monash University
Melbourne, Australia
Dec 2014 - Feb 2015Summer Research Fellow
School of Chemistry and Molecular Biosciences, The University of Queensland (UQ)
Brisbane, Australia
Feb 2013 - Jul 2013Visiting Research Fellow
School of Chemistry, Monash University
Melbourne, Australia
Aug 2012 - Sep 2012Visiting Research Fellow
School of Applied Sciences, RMIT University
Melbourne, Australia
Aug 2011 - Sep 2011Undergraduate Research Intern
Helmholtz Centre for Environmental Research (UFZ)
Leipzig, Germany
Teaching

 

  • Physical Chemistry (Fall & Spring, CO-440)

  • Physical Chemistry Lab (Spring, CO-446-B)

Selected Publications

Hayn, M.; John, T.; Bandak, J.; Rauch‐Wirth, L.; Abel, B.; Münch, J. Hybrid Materials From Peptide Nanofibrils and Magnetic Beads to Concentrate and Isolate Virus Particles. Adv. Funct. Mater. 2024, 34 (27), 2316260. 
DOI: https://doi.org/10.1002/adfm.202316260

 

John, T.; Rampioni, A.; Poger, D.; Mark, A. E. Molecular Insights into the Dynamics of Amyloid Fibril Growth: Elongation and Lateral Assembly of GNNQQNY Protofibrils. ACS Chem. Neurosci. 2024. 15 (4), 716–723.
DOI: https://doi.org/10.1021/acschemneuro.3c00754

 

John, T.; Piantavigna, S.; Dealey, T. J. A.; Abel, B.; Risselada, H. J.; Martin, L. L. Lipid Oxidation Controls Peptide Self-Assembly near Membranes through a Surface Attraction Mechanism. Chem. Sci. 2023, 14 (14), 3730–3741. 
DOI: https://doi.org/10.1039/D3SC00159H

 

John, T.; Adler, J.; Elsner, C.; Petzold, J.; Krueger, M.; Martin, L. L.; Huster, D.; Risselada, H. J.; Abel, B. Mechanistic Insights into the Size-Dependent Effects of Nanoparticles on Inhibiting and Accelerating Amyloid Fibril Formation. J. Colloid Interface Sci. 2022, 622, 804–818. 
DOI: https://doi.org/10.1016/j.jcis.2022.04.134

 

Jun, H.; Wang, X.; Parsons, M. F.; Bricker, W. P.; John, T.; Li, S.; Jackson, S.; Chiu, W.; Bathe, M. Rapid Prototyping of Arbitrary 2D and 3D Wireframe DNA Origami. Nucleic Acids Res. 2021, 49 (18), 10265–10274. 
DOI: https://doi.org/10.1093/nar/gkab762

 

John, T.; Gladytz, A.; Kubeil, C.; Martin, L. L.; Risselada, H. J.; Abel, B. Impact of Nanoparticles on Amyloid Peptide and Protein Aggregation: A Review with a Focus on Gold Nanoparticles. Nanoscale 2018, 10 (45), 20894–20913. 
DOI: https://doi.org/10.1039/C8NR04506B